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FOREWORD

Thank you for coming to Krynica!
This is the conference of the cycle initiated in 1998 with a meeting in Konopnica

(http://im0.p.lodz.pl/konferencje) and is organized as in 2001 in Krynica (Poland) from
29.04.2002 to 4.05.2002.

The main purpose of the conference is to present an overview of principal directions of
research conducted in differential geometry, topology and analysis on manifolds and their appli-
cations, mainly (but not only) to Lie algebroids and related topics.

We would like to attract attention to:

• Riemannian, symplectic and Poisson manifolds,

• Lie groups, Lie groupoids, Lie algebroids and Lie-Rinehart algebras, Poisson algebras,

• foliations,

• characteristic classes.

The organizers of the conference are grateful to the following sponsors:

• Rector of the Technical University of Łód́z,

• Rector of the Jagiellonian University,

• Rector of the Stanisław Staszic University of Mining and Metallurgy,

• State Committee for Scientific Research,

• Committee on Mathematics of the Polish Academy of Sciences.

We hope that all of you will enjoy your stay in Krynica. We wish you success with your
debates. Have a good time!

Organizers
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WOLAK, Robert

37. NIKITIN, Anatoly Extended Poincaré parasupergroup with
central charges

38. NYONG, Godwin Pure solution conveying geometrical posistion
and Euclidean space

39. OLSZAK, Zbigniew On the holomorphic pseudosymmetry of
Kähler manifolds

40. PLACHTA, Leonid Geomertic aspects of invariants of finite type
of knots in S3

41. POPESCU, Marcela, On higher order geometry and induced objects
POPESCU, Paul on subspaces

42. RYBICKI, Tomasz A smooth structure on a locally compact
topological group

43. SŁUKA, Karina Properties of the curvature of Kähler—Norden manifolds

44. TOMAN, Henrietta On the differentiability of n-loops
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QUANTUM HOLONOMIC COMPUTING VIA LAX TYPE FLOWS
ON GRASSMANNIAN MANIFOLDS AND DUAL MOMENTUM MAPPINGS

D. L. BLACKMORE, ANATOLIJ PRYKARPATSKY, UFUK TANERI

Abstract

A general approach to holonomic quantum computing via Lax—type flows on Grass-
mann manifolds, based on the momentum mapping reduction and connection techniques
is developed. It is shown that the associated holonomy groups can be effectively used in
quantum computations of diverse practical problems.

Contents:
1. Introduction.
2. Symplectic structures on loop Grassmann manifolds.
3. An intrinsic loop Grassmannian structure and dual momentum mappings.
4. Quantum holonomy group.
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RIEMANN—HILBERT PROBLEM: K—THEORY AND BORDISMS1

BOGDAN BOJARSKI and ANDRZEJ WEBER

Abstract

We present classical and generalized Riemann—Hilbert problem in several contexts aris-
ing from K—theory and bordism theory. The language of Fredholm pairs turns out to be
useful and unavoidable. We propose an abstract formulation of a notion of bordism in the
context of Hilbert spaces equipped with splittings.

Bogdan BOJARSKI
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00-950 Warszawa
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MULTIPLE GRUPOIDS:
A NON ABELIAN TOOL FOR LOCAL—TO—GLOBAL PROBLEMS

RONALD BROWN

Abstract

A 1—fold groupoid is just a groupoid and and n—fold groupoid is a set with n groupoid
structures any two of which satisfy an interchange law. The aim of the talk is to show the
intuitions behind how types of n—fold groupoid have been used in homotopy theory and
the cohomology of groups to give new calculations, with a view to encouraging their use in
differential situations.

School of Informatics, Mathematics Division,
University of Wales, Bangor
Dean St., Bangor, Gwynedd LL57 1UT
UNITED KINGDOM
e-mail: r.brown@bangor.ac.uk
http://www.bangor.ac.uk/~mas010/
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CURVATURE PROPERTIES
OF SOME HYPERSURFACES IN SPACES OF CONSTANT CURVATURE

RYSZARD DESZCZ and MAŁGORZATA GŁOGOWSKA

Abstract

We present curvature properties of pseudosymmetry type of some hypersurfaces in semi-
Riemannian spaces of constant curvature. Results related to this talk are contained in the
following papers: [1], [2], [3] and [4].
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THE INTEGRABLE GEOMETRIC DISCRETIZATION
OF THE KOENIGS NETS

ADAM DOLIWA

Abstract

We introduce the Koenigs lattice, which is new integrable reduction of the quadrilateral
lattice (discrete conjugate net). The discretization is performed by the natural extension
of the basic geometric properties of the Koenigs net to the discrete level. We construct
also the Darboux-type transformation of the Koenigs lattice and we show permutability of
superpositions of such transformations, thus proving integrability of the Koenigs lattice.
Details can be found in nlin.SI/0203011.

Institute of Theoretical Physics
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00—681 Warszawa, ul. Hoża 69
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e-mail: doliwa@fuw.edu.pl
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ON LOCAL CLASSIFICATION OF SINGULAR SYMPLECTIC FORMS

WOJCIECH DOMITRZ

Abstract

Let ω be a closed 2-form on R2n, ω is called the singular form if ωn = fΩ, where Ω is the
volume form and f is a smooth function f : R2n → R such that Σ2 = f−1(0) �= ∅. In [3], [5]
and [2] it was shown that there are five generic types of singularities for germs of 2-forms
on R4. All these generic types, among which, one is unstable and has moduli parameters,
are determined by the geometry of the pullback i∗ω to the hypersurface of degeneration
i : Σ2 → R

4.
If germs of singular symplectic forms are equivalent then their pullbacks to the hyper-

surfaces of degeneration are equivalent. We consider the following problem :

Does the pullback of the singular symplectic form to its hypersurface of degeneration
determine the equivalence class of the form?
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NOTES ON EXTENDED RECURRENT
AND EXTENDED QUASI-RECURRENT MANIFOLDS

STANISŁAW EWERT—KRZEMIENIEWSKI

Abstract

Recently M. Prvanovíc ([P] ) introduced a type of manifold (M, g) whose (0, 4) curvar-
ture tensor R satisfies

∇ZR(X,Y,U, V ) =
A(Z) [R(X,Y,U, V ) + (β − ψ)G(X, Y, U, V )]+
β
2 [A(X)G(Z, Y,U, V ) +A(Y )G(X,Z,U, V )+
A(U)G(X, Y,Z, V ) +A(V )G(X,Y,U,Z)] ,

(1)

where β, ψ are functions onM, A is a closed form satisfying βA( ∂
∂xr ) =

∂ψ
∂xr andG(X,Y, U, V ) =

g(Y,U)g(X,V ) − g(Y, V )g(X,U). She proved that in a neighbourhood of a generic point
the associated 1-form A is concircular, i. e.

(∇A) (X, Y ) = Fg(X,Y ) +HA(X)A(Y )

holds for some function F, H, and found the local form of the metric ( [P]). The condition
(1) can be considered as a generalisation of the well known notion of a recurrent manifold
(∇ZR = a(Z)R, ([W])) as well as of generalized recurrent manifold introduced by Dubey
([D])

∇ZR(X,Y, U, V ) = K(Z)R(X, Y, U, V ) + L(Z)G(X, Y, U, V ). (2)

On the other hand Chaki ([Ch]) introduced and studied a type of manifolds satisfying

∇ZR(X,Y,U, V ) =
2a(Z)R(X,Y,U, V ) + a(X)R(Z,Y,U, V )+
a(Y )R(X,Z,U, V ) + a(U)R(X,Y,Z, V ) + a(V )R(X,Y, U, Z)

known as a pseudo-symmetric ( in the sense of Chaki) or quasi-recurrent.
We discuss the condition including the above ones.This can be reduce to the form

∇ZR(X,Y,U, V ) =
2a(Z)R(X,Y,U, V ) + a(X)R(Z,Y,U, V )+
a(Y )R(X,Z,U, V ) + a(U)R(X,Y,Z, V ) + a(V )R(X, Y, U,Z)
2b(Z)G(X,Y,U, V ) + b(X)G(Z,Y,U, V )+
b(Y )G(X,Z,U, V ) + b(U)G(X,Y,Z, V ) + b(V )G(X, Y,U,Z).

(3)

We derive the formulas for the Ricci tensor, its covariant derivative and the Riemann
curvature tensor. It appears that the manifold is of almost constant curvature. Making use
of tensor charcterisation of subprojective spaces ([K]) we prove

Theorem 1. Let M be a conformally flat manifold, dimM > 4, whose curvature satisfy
(3). If the curvature tensor R and the 1-form a do not vanish on any dense subset of M,
then M is subprojective manifold.

This enables finding the local form of the metric of manifolds under consideration.
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FIRST—ORDER DIFFERENTIAL INVARIANTS OF THE SPLITTING
SUBGROUPS OF THE POINCARÉ GROUP P (1, 4)

V. M. FEDORCHUK and V. I. FEDORCHUK

Abstract

The differential invariants of the Lie groups of the point transformations play an impor-
tant role in geometry (see, for example, [1]), group analysis of differential equations (see,
for example, [1—3]), etc.

Our communication is devoted to the construction of the differential invariants for non-
conjugate subgroups of the generalized Poincaré group P (1, 4). The group P (1, 4) is a
group of rotations and translations of the five—dimensional Minkowski space M(1, 4). For
all splitting subgroups of the group P (1, 4), the first—order differential invariants have
been found.

The results obtained have been used for the construction of the first-order differential
equations in the space M(1, 4)×R(u), which are invariant under splitting subgroups of the
group P (1, 4).

Since the Lie algebra of the group P (1, 4) contains as subalgebras the Lie algebra of
the Poincaré group P (1, 3) and the Lie algebra of the extended Galilei group �G(1, 3) [ 4 ],
the obtained differential equations can be used in relativistic and non—relativistic physics.
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LIE BRACKET ON AFFINE BUNDLES

JANUSZ GRABOWSKI, KATARZYNA GRABOWSKA, PAWEŁ URBAŃSKI

Abstract

Natural analogs of Lie brackets on affine bundles are studied. In particular, a close
relation to Lie algebroids and duality with certain affine analog of Poisson structures is
established as well as affine versions of the complete lift and the Cartan exterior calculus.
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Hoża 74, 00—682 Warszawa
POLAND
e-mail: urbanski@fuw.edu.pl

25



THE WORKS OF PROFESSOR STANISŁAW GOŁĄB
IN THE FIELD OF FUNCTIONAL EQUATIONS

ROMAN GER

Abstract

Although the impressive scientific output of Professor Stanisław Gołąb uniquely quali-
fies him as the very prominent Polish geometrist even an extremely brief (just one sentence
altogether) biographic note in Nowa encyklopedia powszechna PWN, vol. 2, p. 567, states
that S. Gołąb’s papers deal also with functional equations. Actually, approximately 20%
of his scientific publications might be classified among this theory. The list of 50 papers
presented below (I will be frequently referring the listeners to this list during my talk) con-
tains the items that are more or less directly related to functional equations. Among them
the monograph [26] written jointly with János Aczél, the world-wide leader in this field,
belongs to one of the first books devoted entirely to functional equations. The fundamental
one among those considered in [26] is the translation equation

F (F (x, s), t) = F (x, ts)

intensively studied throughout several decades and nowadays. This equation, occurring
while studying the problem of determination of geometric objects, yields also the subject
of numerous papers listed below.

Another equation of basic importance is commonly known as the Gołąb-Schinzel func-
tional equation

f(x+ yf(x)) = f(x)f(y)

which was obtained in [24] while looking for some special subgroups or subsemigroups of
a given continuous group of transformations. Enormous number of mathematicians were
and are inspired by that idea which led them to substantial generalizations of this equation
studied in various classes of functions and pretty general spaces.

Equally inspiring was the paper [21] written jointly with Mieczysław Kucharzewski who,
like his teacher S. Gołąb, had great achievements in applying functional equation methods
to geometry. Studying homomorphisms of the differential groups Lsn and, in particular, the
multiplicative Cauchy equation involving matrix arguments is extremely vivid up to now.

The other topics that will be discussed and reported on may be framed as follows:

• characterizations of mappings,

• other functional equations occurring in geometry,

• functional equations stemming from algebra,

• functional equations stemming from analysis,

• the significance of the domain of functional equation and the idea of local solutions,

• the functional equation of brigade;

plainly, all of them dealt with by Professor Stanisław Gołąb in his papers presented
below.
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DUALITY OF SYMMETRIES IN 4—DIMENSIONAL
LORENTZ MANIFOLDS2

GRAHAM S. HALL

Abstract

This paper presents a brief discussion of the description of symmetries in 4-dimensional
Lorentz manifolds (with a view to the space-time of general relativity). The orbit struc-
ture in terms of foliations is particularly stressed. The main symmetry discussed is local
isometry, but other symmetries are briefly mentioned.

1 Introduction

The aim of this paper is to present a brief, reasonably modern approach to the study
of symmetry in general relativity theory, that is, on a 4-dimensional manifold admitting a
Lorentz metric. Throughout,M will be a smooth, connected, Hausdorff manifold admitting
a smooth, Lorentz metric g of signature (−,+,+,+) (and hence M is paracompact [1]). If
m ∈ M,TmM will denote the tangent space to M at m. A Lie derivative is denoted by
L. When component notation is used, a partial derivative and a covariant derivative with
respect to the Levi-Civita connection Γ associated with g are denoted, respectively, by a
comma and a semi-colon.

In Einstein’s general relativity theory, M plays the role of the space-time and the geo-
metrical objects g, Γ and the curvature tensor onM derived from Γ collectively describe the
gravitational field. Einstein’s equations provide the physical restrictions on these objects.
However, they will not be required in this paper.

Of course, there are many different types of symmetry studied in general relativity,
for example, (local) isometries, homotheties, conformal isometries, affine and projective
collineations and symmetries of the curvature and related tensors (for reviews see [2, 3]).
The purpose of this paper, however, is more general, and will concentrate on techniques
rather than the specific symmetry involved. Nevertheless, local isometries will finally be
studied as an application. So far as the present author is aware, the mathematical study of
symmetry in general relativity theory has not taken into account the progress made in the
recent studies of the integrability of vector fields and foliations. The main purpose of this
paper is to attempt a small step in this direction and to set on a more rigorous basis the
general theory of symmetries and their associated orbits.

2 Space-Time Geometry and Decomposition

Let m ∈ M and 0 �= v ∈ TmM . Then v is called spacelike (respectively, timelike or null)
if g(v, v) > 0 (respectively, g(v, v) < 0 or g(v, v) = 0). A 1-dimensional subspace of TmM
is called a direction (at m), and is referred to as a spacelike (respectively, timelike or null)
direction if it is spanned by a spacelike (respectively, timelike or null) vector at m. If U is a
2-dimensional subspace of TmM , then U is called spacelike (respectively, timelike or null)

2This is the text of an invited lecture given at the 3rd Conference GEOMETRY and TOPOLOGY of
MANIFOLDS held in Krynica, Poland, May 2001.
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if all non-zero members of U are spacelike (respectively, if U contains exactly two distinct
null directions or if U contains exactly one null direction). If U is a 3-dimensional subspace
of TmM , the same definitions as in the 2-dimensional case apply except that in the timelike
case, one insists that at least two (or, equivalently, infinitely many) distinct null directions
are contained in U . These definitions are exclusive and exhaustive of all non-zero members
of TmM and all 1-, 2- and 3-dimensional subspaces of TmM . A (smooth) submanifold N
of M of dimension 1, 2 or 3 is called spacelike at m ∈M if its tangent space is a spacelike
direction or subspace of TmM and spacelike if it is spacelike at each m ∈M (and similarly
for timelike and null). If N is a spacelike (respectively, timelike) submanifold of M , then g
induces a positive definite (respectively, Lorentz) metric on N .

It should be pointed out here that the term (smooth) submanifold of M means what
is sometimes referred to as a (smooth) immersed submanifold of M . Thus, if M ′ is a
submanifold of M , then M ′ is a subset of M which has a manifold structure, and is such
that the inclusion map i :M ′ →M is a (smooth) immersion. If, in addition, the manifold
topology (from the manifold structure) on M ′ equals its subspace topology as a subspace
of M when the latter has its manifold topology, then M is called a regular or embedded
submanifold. One of the advantages of regular submanifolds is that ifM1 andM2 are smooth
manifolds and f : M1 →M2 is a smooth map whose range f(M1) lies inside a smooth regular
submanifold N2 of M2, then the map f : M1 → N2 is also smooth. If N2 is not regular,
this latter map may not even be continuous (but if it is continuous then f : M1 → N2
is smooth). There is a type of submanifold introduced, as far as the author is aware, by
Stefan [4, 5], and which is intermediate between submanifolds and regular submanifolds.
A leaf of M is a connected (immersed) submanifold N of M with the additional property
that, if T is any locally connected topological space, and f : T → M is a continuous map
whose range lies inside N , then the map f : T → N is continuous. It follows [4] that if M1

and M2 are smooth manifolds and N2 is a leaf of M2, and f : M1 → M2 is a smooth map
whose range lies in N2, then the map f : M1 → N2 is continuous, and hence smooth. If N
is a subset of M admitting two structures N1 and N2 as smooth regular submanifolds of
M , then, from earlier remarks in this paragraph, the identity maps N1 → N2 and N2 → N1
are each smooth and so N1 = N2 and the regular submanifold structure is unique (see,
e.g. [6]). The same uniqueness conclusion also holds if regular submanifold is replaced
by leaf [4]. Clearly, every connected regular submanifold is a leaf, but the three types of
(connected) submanifold structures (immersed, embedded and leaf) are distinct since the
irrational wrap on the torus is a leaf which is not regular [4], whilst the well known figure
of eight in R2 (see, e.g. [6]) is a connected submanifold which is easily shown not to be a
leaf.

Now let A be a vector space of global, smooth vector fields on M and define the distri-
bution ∆ on M associated with A by [7]

m→ ∆(m) = {X(m) : X ∈ A} ⊆ TmM. (2.1)

Then, for i = 0, 1, 2, 3, 4 and p = 1, 2, 3, define subsets Vi, Sp, Tp and Np by

Vi = {m ∈M : dim∆(m) = i} (2.2)
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Sp = {m ∈M : dim∆(m) = p and ∆(m) is spacelike} (2.3)

Tp = {m ∈M : dim∆(m) = p and ∆(m) is timelike}

Np = {m ∈M : dim∆(m) = p and ∆(m) is null}

Thus, M = ∪4i=0Vi and Vp = Sp∪Tp∪Np (p = 1, 2, 3). This decomposition of M can be
refined topologically by appealing to the rank theorem to see that M = ∪4i=kVi is open in
M for k = 0, . . . , 4. This can then be used to reveal the following disjoint decompositions
of M [7]

M = V4 ∪
�3

i=0
Vi ∪Z1 (2.4)

M = V4 ∪
�3

p=1
Sp ∪

�3

p=1
Tp ∪

�3

p=1
Np ∪ V0 ∪Z (2.5)

where denotes the topological interior (and V4 = V4) and where Z and Z1 are closed subsets
of M each with empty interior.

3 Local Space-Time Symmetries

With A as in the last section, let A1, . . . , Ak ∈ A and let φ1t1 , . . . , φ
k
tk
be the smooth, local

diffeomorphisms associated with them, for appropriate values of t. Then consider the set
of all such local diffeomorphisms (where defined) of the form

m→ φ1t1(φ
2
t2
(· · ·φktk(m) · · · )), (m ∈M) (3.1)

for each choice of k,X1, · · · ,Xk and admissible (t1, · · · , tk) ∈ R
k. There is an equivalence

relation on M given by m1 ∼ m2 if some local diffeomorphism of the form (3.1) maps
m1 into m2. The associated equivalence classes in M are called the orbits of A and it is
known that these orbits can each be given the structure of a connected, smooth submanifold
of M [8, 4, 5]. In fact, Stefan has shown that these submanifolds constitute a foliation with
singularities, so that each has the extra property of being a leaf. He also showed that if O is
any such leaf andm ∈ O, then the tangent space toO atm is the subspace {f∗v : v ∈ ∆(m′)}
of TmM for each f of the form (3.1) and each m′ ∈M such that f(m′) = m. This subspace
need not equal ∆(m). The condition that it does so for each m ∈ M is equivalent to the
condition that the orbits are integral manifolds of the set A and then A is integrable [8, 4, 5].

In general relativity, the situations of interest occur when A is a Lie algebra (under the
Lie bracket operator) of global, smooth vector fields on M and then attention is directed
to the nature of the orbits of the symmetries represented by A and whether they are
integral manifolds of A. If dim∆(m) is constant on M , the Fröbenius theorem (see e.g.
[6]) guarantees that the orbits are submanifolds and, in fact, integral manifolds of A. The
work of Stefan then ensures that the orbits are leaves of a foliation on M . If dim∆(m) is
not constant, then integrability need not follow. If, however, A satisfies the locally finitely
generated condition (i.e. that each m ∈ M has an open neighbourhood U and a finite
subset A′ of A such that each X ∈ A, when restricted to U , is a combination of members
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of A′ (restricted to U) with coefficients which are smooth maps U → R), then Hermann
[9] has shown that A is integrable (in fact, he showed more than this). Thus, if A is a
finite-dimensional Lie algebra, it is integrable and, again [4, 5], the orbits are leaves of a
foliation with singularities.

The symmetries usually studied in general relativity are described by a Lie algebra of
global, smooth vector fields on the space-time M , with each particular symmetry being
characterised by insisting upon the appropriate property being possessed by the resulting
local diffeomorphisms of the type (3.1) (see, e.g. [2, 3]). Thus, projective symmetry is
defined by insisting that each map (3.1) takes geodesics to geodesics and the resulting Lie
algebra A, now labelled P (M), is the set of all global, smooth vector fields on M with
this property. The vector fields in P (M) are called projective and are characterised by the
condition that, in any chart of M

Xa;b =
1

2
hab + Fab (hab = hba, Fab = −Fba) (3.2)

hab;c = 2gabψc + gacψb + gbcψa

for some closed 1-form field ψ and 2-form field F on M . Special cases are the affine vector
fields (for which ψ ≡ 0 on M and whose associated maps (3.1) preserve also the geodesic
affine parameter), the homothetic vector fields (which are affine and satisfy hab = cgab, c ∈
R) and the Killing vector fields which are homothetic with c = 0 and so LXg = 0 (and for
which each map (3.1) is a local isometry). The sets of all affine, homothetic and Killing
vector fields onM are labelled A(M ),H(M) andK(M) respectively, andK(M) ⊆ H(M) ⊆
A(M) ⊆ P (M), with each being a subalgebra of P (M). Conformal symmetry is defined by
insisting that each map f in (3.1) is a local conformal diffeomorphism, that is, f ∗g = αg
for some appropriate local, smooth real valued function α. The resulting set of all global,
smooth vector fields on M with this property is labelled C(M) and its members are called
conformal. Then X ∈ C(M) is characterised in any chart of M by

Xa;b = φgab + Fab (Fab = −Fba) (3.3)

where φ :M → R and F is a 2-form field on M . The set C(M) is a Lie algebra and H(M)
and K(M) above are subalgebras of it. Now it is well-known that P (M) and C(M) are
finite-dimensional with dimP (M) ≤ 24 and dimC(M) ≤ 15 and so it follows from the
discussion above that the orbits of P (M) and C(M) are each foliations with singularities
and are integral manifolds of P (M) and C(M), respectively, and similarly for their subal-
gebras mentioned above. [It is remarked that the local action on M provided by the local
diffeomorphisms described in the above Lie algebras need not lead to a global Lie group
action onM . This occurs if and only if each vector field in the Lie algebra is complete [10].]

4 The Killing Algebra K(M)

Consider the finite-dimensional Lie algebra of Killing vector fields K(M) on M . The ma-
terial of section 3 shows that the orbits associated with K(M ) are leaves of a foliation with
singularities and are integral manifolds of K(M). It also shows that, if O is any orbit of
K(M), and f any associated local isometry of K(M) whose domain and range are the open
subsets U and U ′ of M , then f gives rise to a smooth map U ∩ O → U ′ whose range lies
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in the leaf O. Hence, it gives rise to a smooth map U ∩ O → U ′ ∩ O, since U ′ ∩ O is an
open and hence, regular submanifold of O. Then if m ∈ U ∩ O, f∗(TmO) = Tf (m)O. The
definitions at the beginning of section 2 then show that, since f is a local isometry, O is
either spacelike, timelike or null. If O is spacelike (respectively, timelike), then g induces a
metric h = i∗g on O which is positive-definite (respectively, Lorentz). If X ∈ K(M) then
X is tangent to O and so there is a unique smooth, global vector field X̃ on O such that
i∗X̃ = X. If O is non-null with induced metric h, then the condition that X ∈ K(M),
that is LXg = 0, is easily shown to imply that LX̃h = 0 and so X̃ is a Killing vector field
on O with metric h, that is, X̃ ∈ K(O). In fact, the map k : X → X̃ is a Lie algebra
homomorphism K(M)→ K(O).

In general, the map k is neither injective nor surjective. That the map k is not surjective
can be seen from the space-time metric given in a global chart on {(x, y, z, t) ∈ R4 : t >
0} ≡M by

ds2 = −dt2 + tdx2 + e2tdy2 + e3tdz2. (4.1)

Here K(M) is 3-dimensional, being spanned by the vector fields ∂
∂x
, ∂
∂y

and ∂
∂z
. However,

each subset O of constant t is an orbit of K(M) and is, with its induced metric, flat
Euclidean 3-space and so dimK(O) = 6.

To investigate whether k is injective or not, let 0 �= X ∈ K(M) and let m ∈ M with
X(m) = 0. Then the local isometries φt associated with X satisfy φt(m) = m and m is
called a zero of X (or a fixed point of each φt). If U is a coordinate neighbourhood of m
with coordinates ya, then the linear isomorphism φt∗ : TmM → TmM is represented in the
basis ( ∂

∂ya )m by the matrix

etB = exp t
�∂Xa

∂yb

�
m

(4.2)

where Ba
b ≡

�
∂Xa

∂yb

�
m
is the linearisation of X atm. Thus, since X ∈ K(M), it follows from

(3.2) that Ba
b = (F a

b)m. Also, since X is affine, if χ is the usual exponential diffeomorphism
from some open neighbourhood of 0 ∈ TmM onto some open neighbourhood V of m, then
[11]

φt ◦ χ = χ ◦ φt∗. (4.3)

It is easily checked from this that, in the resulting normal coordinate system xa with
domain V about m, the components Xa of X are linear functions of the coordinates xa.
Since Ba

b = (F a
b)m is skew self- adjoint with respect to g(m), it follows that the rank of B

is even. If B = 0 then X ≡ 0 on M and so B has rank 2 or 4. The zeros of X in V have
coordinates satisfying Ba

bx
b = 0 and so, if B = 4, the zero m is isolated, whereas if B = 2,

the zeros of X in V can be given the structure of a 2-dimensional, regular submanifold N of
the open submanifold V [12, 13]. Now return to the map k and suppose it is not injective.
Let O be the orbit of K(M) through m. Then there exists X ∈ K(M),X �≡ 0, such that X
vanishes on O, that is, X̃ = 0. Since m is thus not isolated, A = 2, and so the zeros of X in
V are exactly the points on the 2-dimensional regular submanifold N of V . Let O′ = O∩V .
Then O′ is an open subset (and hence an open submanifold) of O. It follows that O′ is a
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submanifold of M contained in the open (hence regular) submanifold V of M and hence
O′ is a submanifold of V [6]. But then O′ ⊆ N ⊆ V , with O′ and N submanifolds of V
with N regular. It follows that O′ is a submanifold of N and so dimO′ ≤ dimN and hence
dimO(= dimO′) ≤ 2. Hence, if dimO is 3 or 4, k is injective. If, however, dimO ≤ 2, k
can fail to be injective, as the following example shows. Let M1 and M2 be 2-dimensional,
connected, smooth manifolds withM2 = R

2. Let g1 be a positive definite metric onM1 with
K(M1) 1-dimensional and spanned by a Killing vector field with a single zero at m ∈M1.
Let g2 be the usual Minkowski metric on M2, so that dimK(M2) = 3. Then the space-
time M1 ×M2 with metric g1 ⊗ g2 is such that dimK(M) = 4 and O = {m1} ×M2 is a
2-dimensional, timelike orbit of K(M) with dimK(O) = 3. Thus, the map K(M)→ K(O)
is not injective.

If O is an orbit of K(M), it was pointed out above that O is either spacelike, timelike
or null. Thus, if dimO = p (1 ≤ p ≤ 3) and O ∩ Sp �= ∅, then O ⊆ Sp (and similarly
for Tp and Np). It is convenient at this point to distinguish between orbits which are, in
some sense, stable with respect to their type and dimension and those which are not. Thus,
an orbit is called stable if it is contained in one of the subsets Sp, Tp or Np(1 ≤ p ≤ 3).
Actually, since the inner product of a Killing vector field and the tangent vector to an
affinely parameterised geodesic is constant along the geodesic, an argument based on the
normal geodesics to orbits contained in S3 and T3 and an appeal to the rank theorem similar
to that made at the end of section 2 shows that S3 and T3 are open. Thus, all orbits in
S3 and T3 are stable. Regarding the stability of orbits, it is easy to show that, if O is any
orbit of K(M) such that O ∩ Sp �= ∅ (1 ≤ p ≤ 3), then O ⊆ Sp (and similarly for Tp and
Np). It is now possible to prove a number of results about how the existence of a certain
type of stable orbit restricts the dimension of K(M). These results are often used in the
relativistic literature without justification. Some similar (but, as yet, incomplete) results
are available in a similar context for unstable orbits [14].

In summary then (see [14, 15] for further discussion), the Lie algebra K(M) of global,
smooth Killing vector fields on a space-time M with smooth, Lorentz metric g is finite-
dimensional and the orbits resulting from the maps (3.1) constitute a foliation with sin-
gularities. The maps (3.1) are smooth (local) maps M → M (and also O → O, for any
orbit O) and give rise to a Lie group (global) action on M if and only if each member of
K(M) is complete. A convenient decomposition of M with respect to the Lorentz metric g
on M is provided by (2.2)—(2.5). The tangency of the members of K(M) to an orbit leads
to a natural Lie algebra homomorphism K(M) → K(O) which is easily seen to be not
necessarily surjective and which is, perhaps less obviously, not necessarily injective, but is
injective if dimO ≥ 3. This latter remark stems from a study of the zeros of the members
of K(M). The orbits of K(M) were then divided into stable and unstable ones and the
known (and used) results in orbit theory in general relativity can then be shown to apply
to the stable orbits.
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HOLONOMY THEORY AND 4—DIMENSIONAL LORENTZ MANIFOLDS

GRAHAM S. HALL

Abstract

LetM be a smooth, 4—dimensional, connected, Hausdorff manifold with smooth Lorentz
metric g. Let Φ be the holonomy group of M associated with the Levi—Civita connection
from g with holonomy algebra φ. The purpose of this talk is to give some results regarding
the possibilities for Φ. Let L be the Lorentz group with connected component L0 and
with Lie algebra L. Clearly, Φ is a subgroup of L and the well-known classification of
L is thus important in this work. Φ is a Lie group and, if M is simply connected, Φ is
a connected subgroup of L0. In this case, since φ is a subalgebra of L, there exists a
one—to—one correspondence between the possibilities for Φ and the subalgebras of L. This
gives a classification up to isomorphism of the possible holonomy groups of M . A coarser
classification can (and will) be given in terms of covariantly constant and recurrent vector
fields on M . Another useful approach (thinking of the pair (M,g) as the space—time of
Einstein’s general relativity) is to seek the possibilities for Φ when the energy—momentum
tensor representing the physics of space—time is given. This will be discussed for the more
commonly used energy—momentum tensors. Some remarks will also be made concerning
the use of holonomy theory in the study of space—time curvature structure and space—time
symmetries and in the theory of the Petrov classification of the Weyl tensor for gravitational
fields.
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ON HYPERSURFACES WITH TYPE NUMBER TWO
IN SPACE FORMS

MARIAN HOTLOŚ

Abstract

1. B���� � ���� ��

Let (M, g), n ≥ 3, be a connected semi-Riemannian manifold of class C∞. We denote by
∇, R, C, S and κ the Levi-Civita connection, the Riemann-Christoffel curvature tensor,
the Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature of (M,g),
respectively. The Ricci operator S is defined by g(SX, Y ) = S(X,Y ), where X,Y ∈ Ξ(M),
Ξ(M) being the Lie algebra of vector fields on M . Next, we define the endomorphisms
R(X,Y ), C(X,Y ) and X ∧A Y of Ξ(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y ,

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z ,

C(X,Y )Z = R(X,Y )Z −
1

n− 2
(X ∧g SY + SX ∧g Y

−
κ

n− 1
X ∧g Y )Z ,

respectively, where A is a symmetric (0, 2)-tensor and X,Y,Z ∈ Ξ(M). The Riemann-
Christoffel curvature tensor R, the Weyl conformal curvature tensor C and the (0, 4)-tensor
G of (M,g) are defined by

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4) ,

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4) ,

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3, X4) ,

respectively. For a (0, k)-tensor field T , k ≥ 1, and a (0, 2)-tensor field A on (M,g) we
define the tensors R · T and Q(A,T ) by

(R · T )(X1, . . . ,Xk;X,Y ) = −T (R(X, Y )X1,X2, . . . ,Xk)

−· · · − T (X1, . . . , Xk−1,R(X,Y )Xk) ,

Q(A,T )(X1, . . . ,Xk;X,Y ) = −T ((X ∧A Y )X1,X2, . . . ,Xk)

−· · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk) ,

respectively. Putting in the above formulas T = R, T = S or T = C, A = g or A = S, we
obtain the tensors R ·R, Q(g,R), Q(S,R), R · S, Q(g, S), R ·C, Q(g,C) and Q(S,C). We
define the following subsets of M : UR = {x ∈ M |R − κ

(n−1)n
G �= 0 at x}, US = {x ∈

M |S − κ
n
g �= 0 at x}, UC = {x ∈ M |C �= 0 at x} and U = US ∩ UC . We note that

U ⊂ UR.
A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetric if at every

point of M the tensors R ·R and Q(g,R) are linearly dependent. This is equivalent to

R ·R = LRQ(g,R) (1)
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on UR, where LR is some function on UR. The class of pseudosymmetric manifolds is
an extension of the class of semisymmetric manifolds (R · R = 0). Some geometrical
considerations show that (1) is a more natural curvature condition than the condition of
semisymmetry. For a presentation of facts related to this statement and other conditions
of pseudosymmetry type we refer to a recent review paper [1].

2. M��� #��$��

Let (M,g), n = dim M ≥ 4, be a semi-Riemannian manifold satisfying at every point the
following curvature condition of pseudosymmetry type: the tensors R · C and Q(S,C) are
linearly dependent. This is equivalent on the set U consisting of all points of M at which
Q(S,C) �= 0 to

R · C = LQ(S,C) , (2)

where L is some function on U . In this paper, without loss of generality, we restrict our
investigations to the set UL ⊂ U defined by UL = {x ∈ U |L �= 0 at x}.

Our aim is to investigate hypersurfaces in semi-Riemannian space of constant curvature
Nn+1
s (c), n ≥ 4, with signature (s, n+ 1− s). Let M be a such hypersurface. We denote

by g the metric tensor of M induced from the metric of the ambient space and by H the
second fundamental tensor of (M,g). Let UH be the subset of M consisting of all points
at which the tensor H2 is not a linear combination of H and g. In a few earlier papers we
considered hypersurfaces in semi-Euclidean spaces En+1s , n ≥ 4, fulfilling (2). For instance,
in [4] (see Theorem 4.1 and Theorem 4.2) it was shown that if M is a hypersurface in En+1s ,
n ≥ 4, satisfying (2) then on UH ∩UL we have: rank (S− κ

n−1 g) = 1 and R ·C = Q(S,C) ,
i.e. (2) with L = 1.
On the other hand we have

Proposition 1 ([3], Proposition 4.3). Let M be a hypersurface in Nn+1
s (c) satisfying

R ·C = Q(S,C). If UH ⊂M is nonempty then the ambient space must be semi-Euclidean.

Therefore we investigate hypersurfaces M in Nn+1
s (c) with nonzero sectional curvature

c satisfying (2). The main result is the following

Theorem 2 ([3], Theorem 4.1). Let M be a hypersurface in Nn+1
s (c), c �= 0, satisfying

(2). Then at every point x ∈ UH ∩ UL ⊂M we have

κ

n− 1
=

�κ
n+ 1

, S −
κ

n
g = β w ⊗w , β ∈ , w ∈ T∗xM

and

L =
1

n− 1
, R ·R =

κ

n(n− 1)
Q(g,R) , R ·R = Q(S,R)−

(n− 2)κ

n(n− 1)
Q(g,C) .

From Theorem 5.1 of [2] it follows: (1) holds at a point x ∈ UH if and only if at this
point rankH = 2, i.e. the type number of M at this point is equal to 2. We have the
following

Proposition 2 ([3], Proposition 5.1). Let M be a pseudosymmetric hypersurface in Nn+1
s (c),

n ≥ 4.
(i) At every point x ∈ UH ⊂M we have

(a) rank (H2 − tr(H)H) = 1 , or (b) rank (H2 − tr(H)H) = 2 , (3)
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(ii) If c �= 0 and at x ∈ UH we have (3)(b) then (2) cannot be satisfied at this point.
(iii) If c �= 0 and at a point x ∈ UH we have (3)(a), i.e.

H2
ij − tr(H)Hij =

1

ρ
aiaj , ρ ∈

then the following relations are fulfilled at x: (2) with L = 1/(n− 1), κ
n−1 = �κ

n+1 and

akak = 0 , ak = gjkaj , Sij −
κ

n
gij =

ε

ρ
aiaj ,

Basing on this result we construct two examples of hypersurfaces with type number two.
The first one satisfies the equality R · C = 1

n−1 Q(S,C) and the second one does not.
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COMBINATORICS OF THE FIRST NEIGHBOURHOOD
OF THE DIAGONAL

ANDERS KOCK

Abstract

The consideration of the k’th neighbourhood of the diagonal of a manifold M

M(k) ⊆M ×M

was initiated by Grothendieck to import notions from differential geometry into the realm
of algebraic geometry. These notions were re-imported into differential geometry by Mal-
grange. Grothendieck and Malgrange utilzed the notion of ringed space (a space equipped
with a structure sheaf of functions). The only points of the (underlying space of) M(k) are
the diagonal points (x, x) with x ∈ M . But it is worthwhile to describe mappings to and
from M(k) as if it consisted of “pairs of k-neighbour points (x, y)" (write x ∼k y for such a
pair; such x and y are “point proches" in the terminology of A. Weil). The introduction of
topos theoretic methods has put this “synthetic" way of speaking onto a rigourous basis,
and we shall freely use it.

A differential 1-form ω on M is thus defined to be a map ω : M(1) → R, vanishing on
the diagonal. So ω(x, y) makes sense whenever x ∼1 y; and ω(x, x) = 0 for all x ∈ M .
Unravelling the definition ofM(1) in terms of its structure sheaf almost immediately reveals
that such an ω is an element of the Kähler differentials Ω1(M) = I/I2. There is no linearity
requirement on ω; and ω(x, y) = −ω(y, x) is automatic.

One can go on and define a k-form on M as an element of the k’th exterior power of
Ω1. This is the classical approach in algebraic geometry. But there is an alternative, more
geometric/simplicial approach to the theory of differential forms, which we shall expound.

It is based on the consideration of the space

M[k] ⊆Mk+1

of “infinitesimal k-simplices". It is the “set" of k + 1-tuples (x0, . . . , xk) with xi ∼1 xj for
all i, j = 0, . . . , k. We shall call the simplex degenerate if two of its vertices xi and xj are
equal. Then the geometric/synthetic/combinatorial approach to differential forms is based
on

Theorem There is a bijective correspondence between functions ω : M[k] → R vanishing
on degenarate simplices, and classical differential k-forms on M .

Note that there is no multilinearity or alternating requirement on ω. — Since the M[k]’s
jointly form a simplicial “set”, a differential k-form may be seen as a k-cochain, and there
is therefore a formula for its coboundary; for instance, if ω is a 1-form, dω is the 2-form
given by

dω(x, y, z) = ω(x, y) + ω(y, z) + ω(z, x). (1)
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It can be proved to correspond to the classical exterior derivative, under the correspondence
of the theorem. But it generalizes in a more seamless way to differential forms with values
in Lie groups G more general than R. For instance, (1) is replaced by

dω(x, y, z) = ω(x, y) · ω(y, z) · ω(z, x). (2)

This aspect of the theory is well suited for a treatment of the theory of connections in
principal G-bundles P or groupoids PP−1. A connection in a bundle E → M is, in the
synthetic theory, a law ∇ which to a pair of 1-neighbour points x ∼1 y in M associates a
“parallel transport” map ∇yx from the x-fibre of E to its y-fibre.

We shall describe the relationship between gauge-P valued forms, connections, and
curvature, in synthetic/combinatorial terms. The curvature R∇ of ∇ is a 2-form (in the
above sense) on M with values in a suitable group bundle on M , and is given by

R∇(x, y, z) = ∇(x, y) ◦ ∇(y, z) ◦ ∇(z, x),

— We shall utilize these descriptions to provide an explicit construction of a connection in
a principal G-bundle P → M , out of the data of a G-valued Čech-cocycle for the bundle
P , and an R-valued partition of unity on M ; this is based on the possibility of forming
arbitrary affine combinations of the vertices of an infinitesimal simplex.
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ON FIBRATION WITH GRASSMANN MANIFOLDS AS FIBRES

JÚLIUS KORBAŠ

Abstract

The aim of this talk is to present some results on Z2-cohomology properties of smooth
fiber bundles and of Serre fibrations having complex or real Grassmann manifolds as their
fibers.

We mainly concentrate on describing situations when the fiber inclusion (into the total
space) induces an epimorphism in Z2-cohomology. This is related to other topological
questions.

The talk will be based on the paper On fibrations with Grassmannian fibers, Bull.
Belgian Math. Soc. 8 (2001), 119—130; more recent results will also be included.
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TENSOR PRODUCT OF MODULES OVER NON—UNITAL ALGEBRAS
AND LIE—RINEHART ALGEBRAS

JAN KUBARSKI

Abstract

In 1990—99 J. Huebschmann wrote a series of papers relating to Lie—Rinehart algebras.
In

J. Huebschmann, Poisson cohomology and quantization, J. für die Reine und Angew.
Math. 408 (1990), 57—113

the base of the series — the author wrote [p. 70] ”Let A be an algebra over R, not necessarily
with 1” and repeated this sentence in the context of commutative algebras on next pages.
However, all the technical tools which were used, are appropriate in the case of unital
algebras only. If we consider the typical situation where the base ring R is unital, then
non-unitality of the R—algebra A means that there is no homomorphism of rings l : R→ A
such that l(r)a = ra = al(r). There are some simple anomalies in the theory of A—modules
over non-unital R—algebra A which caused that the planned researches on Lie—Rinehart
algebras for algebras not necessarily with 1 failed. Moreover, the construction of the Picard
group for a ring A with a unit can not be adapted to the non—unital case. The reason is that
there is a difference between projective modules in the category of non—unital and unital
modules. The aim of this paper is to construct the notion of a tensor product of modules
over non—unital algebras which does not possesses the anomalies and its applications for
the Picard group of non—unital algebras and Lie—Rinehart algebras.
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SPACES OF DIFFERENTIAL OPERATORS AS
MODULES OVER THE LIE ALGEBRA

OF VECTOR FIELDS

PIERRE LECOMTE

Abstract

The space Dλ of differential operators acting on the λ-densities over a smooth manifold
M is filtered by the order of differentiation. The associated graded space is the space
S(M) of smooth functions on T ∗M that are polynomial on the fibers. Both Dλ and S(M)
are modules over the Lie algebra of vector fields V ect(M) of M and the projection map
Dλ → S(M), called the principal symbol map, is equivariant. It is onto. Moreover, although
as vector spaces, Dλ and S(M) are isomorphic, there is no equivariant bijection between
them.

Viewing T ∗M as the phase space of some mechanical system, S(M) is then the Pois-
son algebra of the classical observables. A bijection from S(M) onto Dλ that preserves
the principal symbol could then be interpreted as a quantification procedure. From the
infinitesimal point of view, symmetries of the system lead to vector fields leaving that
procedure equivariant.

It is known that there is no natural quantization, that is no quantization procedure
that is equivariant under V ect(M). On the other hand, quantization procedures have
been constructed on IRm that are equivariant under the projective embedding slm+1 of
sl(m + 1, IR) and the conformal embedding of so(p + 1, q + 1), p + q = m. Moreover
some uniqueness properties have been shown for these quantizations. In particular, the
slm+1-equivariant quantization is unique. This has been used to study various questions
about V ect(M)-modules of differential operators over arbitrary manifolds, the strategy
being as follows: first study them over IRm, filtering V ect(IRm) by slm+1 then glue the
local informations collected on the various domains of chart by this means to get a global
result. The power of the method comes from the fact that the filtering algebra is finite
dimensional and simple, simplifying for instance cohomological considerations.

The above algebras of symmetries turn out to be maximal subalgebras of the Lie algebra
of polynomial vector fields of IRm. Because of that the family of these maximal subalgebras
has been studied since then as well as the corresponding existence and uniqueness problem
for the corresponding quantization procedures. The main result about the maximal subal-
gebras is that they coincide with the well known filtered algebras studied by Kobayashi and
Nagano, that are related to geometries of order 2. Besides, algorithms have been found to
decide wether or not the corresponding quantization procedures exist and are unique, using
the ressources of the represntation theory of the semisimple Lie algebras. 3 The existence
problem of quantization procedures is a particular case of the more general problem of
classification of the spaces of differential operators as modules over Lie subalgebras of the
algebra of vector fields. These questions involved some cohomological considerations that
have also been in vestigated, leading to some nice universal cocycles.

On the other hand, going from vector space to curved manifold in order to get coordinate
free expression of these quantization procedures also poses nice questions that one has
started to study.

My goal would be to present a landscape of all that stuff, presenting the main results,
the main methods and tools and the main contributors in the field.
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SHORTLY ON NATURAL BUNDLES

WŁODZIMIERZ MIKULSKI

Abstract

In this year it is celebrated centenary of Polish mathematician Professor Stanisław
Goła̧b at Jagellonian University, who formulated the definition of geometric objects and
created ”Polish Shool” investigating these objects. On this occasion a short survey on so
called natural bundles and bundle functors is presented. A new result is presented, too.
Namely, a bundle functor onMfm ×Mf of infinite order in the first factor is constructed

Introduction

The modern development of the differential geometry clarified that geometric objects
(see [1]) are sections of fiber bundles over manifolds. (For example, the vector fields on a
manifoldM are sections of the tangent bundle T (M) ofM , the 1-forms onM are sections of
the cotangent bundle T∗(M), etc.) Each type of geometric objects can be interpreted as a
rule F transforming every m-dimensional manifold M into a fibered manifold F (M)→M
over M and every local diffeomorphism f : M → N into a fibered manifold morphism
F (f ) : F (M) → F (N) over f . The geometric character of F is then expressed by the
functoriality condition F (g ◦ f ) = F (g) ◦ F (f ). Hence the classical bundles of geometric
objects are now studied in the form of the so called natural bundles on the categoryMfm
of all m-dimensional manifolds and their local diffeomorphism.

All manifolds are assumed to be finite dimensional, paracompact, second countable,
without boundaries and smooth, i.e. of class C∞. Maps between manifolds are assumed to
be smooth.

I. Natural bundles over m-manifolds

Let us present a definition of natural bundles over m-manifolds.

Definition 1. (Nijenhuis, [22]) A natural bundle over m-manifolds is a covariant functor
F :Mfm → FM from the categoryMfm of m-dimensional manifolds and local diffeomor-
phisms into the category FM of fibered manifolds and fibered maps satisfying the following
conditions:

(i) (Prolongation) For every m-manifold M F (M) is a fibered manifold over M with
projection pM : F (M) → M and for every local diffeomorphism f : M → N of two
m-manifolds F (f ) : F (M)→ F (N) is a fibered map covering f ;

(ii) (Locality) If i : U →M is an inclusion of an open submanifold, then F (U) = p−1M (U)
and F (i) is the inclusion of p−1M (U) into F (M).

(iii) (Regularity) F transform smoothly parametrized systems ofMfm-morphisms into
smoothly parametrized systems of FM-morphisms.

Simple examples of natural bundles are following.

Example 1. The tangent bundle. T (M) denotes the tangent bundle of M and T (f) :
T (M) → T (N) is the tangent map of f : M → N . The functor T : Mfm → FM is a
natural bundle over m-manifolds.

3Key words: natural bundles, gauge natural bundles, bundle functors, jets, Weil algebras, Weil bundles
AMS classification: 53 A 55, 58 A 05, 58 A 20
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Example 2. The cotangent bundle. T ∗(M) denotes the cotangent bundle of M , and
for a local diffeomorphism f :M → N and a point x ∈M let (Tx(f))∗ : T ∗f (x)(N)→ T ∗x (M)

be the transposed mapping of the differential Tx(f) : Tx(M) → Tf (x)(N) of f at x . Then
Tx(f) is a linear isomorphism, and we define T ∗x (f ) = ((Tx(f))

∗)−1 : T ∗x (M) → T ∗f(x)(N)

and the induced mapping T ∗(f) : T ∗(M)→ T ∗(N) by (T ∗(f))|T ∗x (M ) = T ∗x (f ) . The functor
T ∗ :Mfm → VB is a natural bundle over m-manifolds.

Example 3. The bundle of frames of order r. Let m and r be natural numbers. We
denote by Gr

m the differential group of order r in dimension m, it means

Gr
m =

�
jr0(ξ) | ξ : U → R

m, U ⊂ Rm is open, ξ is a local diffeom., ξ(0) = 0
�
,

where jr0(ξ) is the r-jet of ξ at 0. Gr
m is a Lie group with respect to r-jets multiplication

jr0(ξ1) · j
r
0(ξ2) = jr0(ξ1 ◦ ξ2).

Let M be an m-manifold. We denote by P r(M) the r-th order frame bundle of M over
M . It means

P r(M) =
�
jr0(γ) | γ : U →M, U ⊂ Rm is open, γ is a local diffeomorphism

�
.

The group Gr
m acts on P r(M ) on the right by the formula jr0(γ) · j

r
0(ξ) = jr0(γ ◦ ξ). P

r(M)
is a principal fibre bundle with the structure group Gr

m. For a local diffeomorphism f :
M → N of two m-manifolds the induced mapping P r(f) : P r(M) → P r(N) is given
by P r(f)(jr0(γ)) = jr0(f ◦ γ). The functor P r : Mfm → FM is a natural bundle over
m-manifolds.

The most general example of natural bundles is following.

Example 4. The associated bundle. Let S be an Gr
m-space, it means that S is a

manifold and Gr
m acts on S on the left by an action α. For an m-manifold M we put

ES(M) = P r(M)[S,α] ,

where P r(M)[S,α] is the associated bundle with P r(M) and standard fibre S. We recall
that P r(M)[S, α] is the set of all orbits in P r(M) × S with respect to the action of Gr

m

given by (jr0(γ), y) · j
r
0(ξ) = (jr0(γ ◦ ξ), j

r
0(ξ

−1) · y) . We denote by < jr0(γ), y > the orbit of
(jr0(γ), y) and we define π : ES(M)→M , π(< jr0(γ), y >) = γ(0) .

For a local diffeomorphism f :M →M of twom-manifolds we define ES(f) : ES(M)→
ES(N) by

ES(f)(< jr0(γ), y >) =< jr0(f ◦ γ), y > .

The functor ES :Mfm → FM is a natural bundle over m-manifolds.

Definition 2. Let F be a natural bundle over m-manifolds. We say that F is of finite
order if there is a number r such that from jrx(f) = jrx(g) it follows Fx(f) = Fx(g) for
every local diffeomorphisms f, g : M → N between m-manifolds and every point x ∈ M ,
where (obviously) Fx(f) : Fx(M) → Ff (x)(N) is the restriction and corestriction of F (f) :
F (M) → F (N) to the fibres Fx(M) and Ff (x)(N) of F (M) and F (N) over x ∈ M and
f(x) ∈ N . The smallest number r satisfying the above property is called the order of F .

The tangent bundle T is of order 1, the cotangent bundle T ∗ is of order 1, the bundle
P r of frames of order r is of order r and the associated (with P r) bundle ES is at most of
order r.

Theorem 1. (Palais and Terng, [23]) Every natural bundle F over m-manifolds has a
finite order. The order of F is less than or equal to 2f + 1, where f = dim(F0(Rm)).
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In [16], Masuda investigated homomorphisms of Lie algebras of vector fields. From the
results of Masuda one can very easily deduce the above order theorem (even with a better
estimation). Namely, from the results of [16] it follows that the order of a natural bundle
F over m-manifolds is less than or equal 2(f2+ f )+1 , see [17]. The paper of Masuda was
published one year ealier than the paper of Palais and Terng. However Masuda has not
formulated the order theorem explicitly.

Theorem 2. (Epstein and Thurston, [5]) If F :Mfm →FM is a covariant functor
from Definition 1 satisfying the conditions (i) and (ii), then F satisfies also (iii) and F
has a finite order less than or equal to 2f + 1, where f = dim(F0(R

m)). If m = 1, the
estimation of the order is sharp.

Theorem 3. (Zajtz, [26]) Let F be a natural bundle over m-dimensional manifolds,
m ≥ 2, with a standard fibre of dimension f . Then the order r of F satisfies the inequality

r ≤ max(
f

m− 1
,
f

m
+ 1) .

This estimation of the order is sharp.

Let F be a natural bundle over m-manifolds. According to Theorem 1 F has a finite
order r. Let SF = F0(R

m) be the standard fibre of F . We can define an action αF on the
left of the r-th order differential group Gr

m on SF by the formula

jr0(ξ) · y = F (ξ)(y) ,

where y ∈ SF and jr0(ξ) ∈ Gr
m . This action is well-defined because of the order argument

and it is smooth because of the regularity condition (iii) of Definition 1.
The above action is called the standard action of Gr

m on the standard fibre SF of F .
Now we can consider the associated bundle ESF :Mfm → FM.

Theorem 4. (Palais and Terng, [23]) Every natural bundle F over m-manifolds is
equivalent with the associated bundle ESF , where SF = F0(Rm) is the standard fibre of F
with the standard action of Gr

m on SF , where r is the order of F .

Proof. (see [6]) A canonical diffeomorphism IM : ESF (M) −→ F (M) is given by
IM (< jr0(γ), y >) = F (γ)(y) .

In particular case when F (M) is a principal bundle Theorem 4 was proved independently
by Krupka, [13].

II. Bundle functors on manifolds

Some ”natural bundles” (as T) can be defined on the whole categoryMf of all manifolds
and maps.

Definition 3. A bundle functor on Mf is a covariant functor F :Mf → FM satisfying
the following conditions (i)–(iii) of the definition of natural bundles with Mf instead of
Mfm.

We have the following examples of bundle functors onMf :

Example 5. The tangent bundle T :Mf →FM is a bundle functor onMf .

Example 6. The bundle T r
p of pr-velocities. The r-tangent bundle T r. Let M be a

manifold. Let T r
p (M) = Jr0 (R

p,M) be the bundle of r-jets at 0 ∈ Rp of smooth functions
Rp →M . T r

p (M) is called the bundle of pr-velocities over M . Every mapping f : M → N
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of two manifolds is extended to a fibre bundle mapping T r
p (f) : T

r
p (M)→ T rp (N), jr0(γ)→

jr0(f ◦ γ). The functor T
r
k :Mf → FM is a bundle functor.

For p = 1 the functor T r = T r
1 is called the r-tangent bundle functor.

Example 7. The r-th order vector tangent bundle T (r). Let M be a manifold. Let
T (r)(M) = (T r∗(M))∗ be the dual vector bundle, where T r∗(M) = Jr(M,R)0. Vector
bundle T (r)(M) is called the r-th order vector tangent bundle of M . Every smooth mapping
f : M → N of two manifolds induces vector bundle mapping T (r)(f) : T (r)(M)→ T (r)(N)

as follows. We denote the fibres of T (r)(M) and T r∗(M) over a point x ∈ M by T
(r)
x (M)

and T r∗
x (M) respectively. For any x ∈ M we have the linear mapping fr∗|x : T r∗

f (x)(N) →

T r∗
x (M) defined by fr∗|x (j

r
f (x)(γ)) = jrx(γ ◦ f ). We define T (r)(f) : T (r)(M) → T (r)(N) by

the condition that the restriction T (r)(f)
|T
(r)
x (M)

: T
(r)
x (M) → T

(r)
f(x)

(N) is the transposed

mapping to fr∗|x . The functor T (r) :Mf → VB is a vector bundle functor on Mf .

To present a next example we need a preparation.

Let Lr = {Lrm,n}m,n=0,1,2,..., where

Lrm,n = Jr0 (R
m,Rn)0

is the space of r-jets at 0 ∈ Rm of maps Rm → Rn sending 0 into 0.
Let S = {S0, S1, ...} be a system of manifolds. An action α of Lr on S is a system of

smooth maps αm,n : Lrm,n × Sm → Sn satisfying

αm,p(B ◦A, s) = αn,p(B,αm,n(A, s))

for every A ∈ Lrm,n, B ∈ Lrn,p and s ∈ Sm.

Example 8. The associated bundle. Consider a system of manifolds S = {S0, S1, ...}
and an action α of Lr on S. We shall construct a bundle functor Eα determined by this
action. The restriction αm of the maps αm,m to invertible jets form actions of the jet group
Gr
m on Sm. For every m-manifold M we put

Eα(M) = P r(M)[Sm, αm] .

For every map f :M → N we define Eα(f) : Eα(M)→ Eα(N) by

Eα(f)(< u, s >) =< v,αm,n(v
−1 ◦A ◦ u, s) > ,

where m = dim(M), n = dim(n), u ∈ P r
x(M ), A = jrx(f ), s ∈ Sm and v ∈ P r

f (x)(N) is an
arbitrary element. One can easily seen that this is a corect definition and the correspondence
Eα :Mf → FM is a bundle functor on Mf .

Definition 4. Let r be a non-negative integer or infinity. Let F be a bundle functor
on Mf . We say that F is of order less or equal to r if from jrx(f) = jrx(g) it follows
Fx(f) = Fx(g) for every mappings f, g : M → N and every point x ∈ M . The smallest
number r satisfying the above property is called the order of F .

Theorem 5. (Mikulski, [19]) Every bundle functor F on Mf has locally a finite order.
More precisely, for any manifolds M,N, any point x ∈ M and any mappings f, g : M →

N the condition j
r(dim(M)+1)
x (f) = j

r(dim(M )+1)
x (g) implies Fx(f) = Fx(g), where r(m)

denotes the order of the natural bundle obtained by the restriction of F to the category of
m-dimensional manifolds and their local diffeomorphisms.
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An open problem. Whether the condition j
r(dim(M ))
x (f) = j

r(dim(M))
x (g) implies

Fx(f) = Fx(g) for any manifolds M,N , any point x ∈M and any mappings f, g : M → N ,
i.e. is the estimation in Theorem 5 sharp.

Example 9. (Mikulski, [18]) A bundle functor on Mf of infinite order. We recall
that T (r)(M) denotes the r-th order vector tangent bundle (see Example 7). Let dr =

dim(T
(r)
0 (Rr)). We set

F (M) =
+∞�

k=1

(
�

dk T (k)(M)) .

For every manifold M , F (M) is a finite dimensional manifold because for k > dim(M) the
bundle

	dk T (k)(M) is zero-bundle. Hence the direct sum in the definition of F (M) is in
reality a finite sum. For a mapping f :M → N the induced mapping F (f) : F (M)→ F (N)
is defined in the natural way from

	dk T (k)(f ).
The bundle functor F is of infinite order because its restriction to the category of k-

dimensional manifolds is at least of order k.

Theorem 6. (Kolář and Slovák, [12]) If F is a covariant functor from Definition 3
satisfying the conditions (i) and (ii), then F satisfies also (iii).

Let F be a bundle functor on Mf of finite order r. Put SF = {SF0 , S
F
1 , ..., }, where

SFm = F0(R
m) for m = 0, 1, ... are the standard fibers of F . We can define an action

αF = {αFm,n} of L
r on SF by the formula

jr0(h) · s = F (h)(s) ,

where s ∈ SFm and jr0(h) ∈ Jr0 (R
m,Rn)0. This action is well defined because of the order

argument, and it is smooth because of the regularity condition (iii).
The above action is called the standard action of Lr on the standard fibres SF of F .
Now we can consider the associated bundle EαF :Mf → FM.

Theorem 7. (Janyška, [7]) Every bundle functor F on Mf of finite order r is equivalent
with the associated bundle EαF .

Proof. A canonical diffeomorphism IM : EαF (M) −→ F (M) is given by IM(<
jr0(γ), s >) = F (γ)(s) .

III. Product preserving bundle functors on manifolds

Many bundle functors onMf are product preserving.

Definition 5. Let F :Mf → FM be a bundle functor. For two manifolds M1,M2 we
denote the standard projection onto i-th factor by pri : M1 ×M2 →Mi, where i = 1, 2. F
is called product preserving if the mapping

(F (pr1), F (pr2)) : F (M1 ×M2)→ F (M1)× F (M2)

is a diffeomorphism for all manifolds M1,M2.
Roughly speaking, F is product preserving if F (M1 ×M2) = F (M1) × F (M2) for any

manifolds M1 and M2.

Example 10. The tangent bundle T : Mf → FM is a product preserving bundle
functor.

Example 11. The pr-velocities bundle T r
p :Mf → FM is a product preserving bundle

functor.
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To present a next example of product preserving bundle functors on Mf we need a
preparation.

Definition 6. A finite dimensional real commutative associative unital algebra A is
called a Weil algebra if it is of the form A = R · 1⊕N , where N is a nilpotent ideal.

Remark 1. Let C∞0 (Rp) be the algebra of all germs at 0 of maps Rp → R. It is a
local algebra and the ideal m of all germs Rp → R vanishing at 0 is its maximal ideal. Let
A ⊂ C∞0 (Rp) be an ideal such that m ⊃ A ⊃ mκ+1 for some natural number κ, where mκ+1

is the algebraic κ+ 1 power of m. The factor algebra A = C∞0 (Rp)/A is a Weil algebra.
Any Weil algebra is isomoprhic to some A = C∞0 (Rp)/A.

Example 12. (Weil, [25]) The Weil bundle TA = Hom(., A) of near A-points. Let
A be a Weil algebra. Let M be a manifold. Let C∞x (M) be the algebra of all germs at
x ∈ M of mappings M → R. An unital algebra homomorphism v : C∞x (M) → A is called
a near A-point over x ∈ M . The space of all near A-points over x will be denoted by
Hom(C∞x (M), A). Let

TA(M) =
�

x∈M

Hom(C∞x (M), A) .

TA(M) is a smooth fiber bundle overM with the obvious projection. Every map f :M → N
of two manifolds is extended to a fibre bundle map TA(f) : TA(M)→ TA(N) over f by

TA(f)(v)(germf(x)(g)) = v(germx(g ◦ f)) ,

x ∈ M , v ∈ Hom(C∞x (M), A), g : N → R. The functor TA : Mf → FM is a product
preserving bundle functor. It is of finite order less or equal to the nilpotency order of A.

Let us denote the addition and the multiplication on R by +, · : R2 → R and for λ ∈ R
denote mλ : R→ R the scalar multiplication by λ. If we apply a product preserving bundle
functor F we obtain F (+) : F (R) × F (R) = F (R×R) → F (R), F (·) : F (R) × F (R) →
F (R) and F (mλ) : F (R)→ F (R). Now, we can formulate the key lemma.

Lemma 1 (Kainz and Michor, [8], Eck, [3], Luciano, [15]) If F is a product preserving
bundle functor on Mf , then AF = F (R) is a Weil algebra with operations F (+), F (·),
F (mλ), zero F (0) and unit F (1), and F0(R) is its nilpotent ideal.

Proof. Let r be the order of the restriction of F to the categoryMf1. Then r is finite
because of Theorem 1. The map f : R → R, f(x) = x+ xr+1, satisfies jr0(f) = jr0 (idR).
Then F0(f ) = idF0(R). Hence a+ ar+1 = F0(f)(a) = a, i.e. ar+1 = 0 for any a ∈ F0(R).

We call AF the Weil algebra of F .

Then we have Weil bundle TA
F
of near AF -points.

Theorem 8. (Kainz and Michor, [8], Eck, [3], Luciano, [15]) Every product preserving
bundle functor F on Mf is equivalent to the Weil bundle TAF of near AF point, where
AF = F (R) is the Weil algebra of F .

Proof. A canonical diffeomorphism IM : F (M) → TAF (M) can be constructed
as follows. If v ∈ Fx(M) we have an algebra homomorphism ṽ : C∞x (M) → AF by
ṽ(germx(g)) = F (g)(v) for any g :M → R, and we put IM(v) = ṽ.

Very interesting is also the following characterization:

Theorem 9. (Kolář and Slovák, [12]) A bundle functor F on Mf is product preserving
if and only if card(F (R0)) = 1 and dim(F (Rn)) = n · dim(F (R)) for any n = 0, 1, 2, ....
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IV. Bundle functors on fibered manifolds and on some other local categories
over manifolds

Some importrant ”bundle functors” are defined on the category FMm,n of fibered man-
ifolds with m-dimensional basis and n-dimensional fibers and their local fibered diffeomor-
phisms. Some of them are defined on a larger category FMm of fibered manifolds with
m-dimensional bases and fibered maps covering local diffeomorphisms. Some are defined on
the whole category FM of all fibered manifolds and fibered maps. The definitions of such
bundle functors are obvious modifications of the definition of natural bundles or bundle
functors. Similarly we define the order of such bundle functors.

Example 13. The r-jet prolongation bundle functor. For an FMm-object Y →M we
set

Jr(Y ) =
�
jrx(σ) | σ is a (locally defined) section of Y , x ∈M

�

Then Jr(Y ) is a fibered manifold over Y with respect to the target projection. Jr(Y ) is
called the r-jet prolongation of Y . For an FMm-morphism f : Y → Z covering a local
diffeomorphism f : M → N we have a fibered map Jr(f) : Jr(Y ) → Jr(Z) covering f

by the formula Jr(f)(jrx(σ)) = jr
f(x)(f ◦ σ ◦ f

−1) . Functor Jr : FMm → FM is a bundle
functor on FMm.

Let r, s, q be natural numbers such that q ≥ r ≤ s. Let Y →M and Z → N be fibered
manifolds. Two fibered maps f, g : Y → Z with base maps f, g : M → N determine the
same (r, s, q)-jet jr,s,qy (f) = jr,s,qy (g) at y ∈ Yx, x ∈M , if

jry(f) = jry(g) , j
s
y(f |Yx) = jsy(g|Yx) and jqx(f ) = jqx(g) .

The space of all (r, s, q)-jets of Y into Z is denoted by Jr,s,q(Y,Z), see [10].

Example 14. The bundle of (k, l)r,s,q-velocities. Let r, s, q, k, l be natural numbers with
q ≥ r ≤ s. For any fibered manifold Y we define T r,s,qk,l (Y ) = Jr,s,q0 (Rk,l, Y ). It is a fiber
bundle over Y with respect to the target projection. If f : Y → Z is a fibered map we have
fibered map T r,s,qk,l (f) : T r,s,q

k,l (Y )→ T r,s,q
k,l (Z) covering f by T r,s,q

k,l (f)(jr,s,q0 (γ)) = jr,s,q0 (f ◦γ).
The correspondence T r,s,q

k,l : FM→ FM is a bundle functor on FM.

For bundle functors on FMm,n we have a similar characterization as in Theorem 4 (we
construct the associated bundle in similar way as for m-manifolds by using FMm,n-maps
instead of FMfm-maps). By Example 9, one can construct bundle functors on FMm (or
FM) of infinite order. Every bundle functor of FMm is of locally finite order. For finite
order bundle functors on FMm (or FM) one can obtain similar characterization as in
Theorem 7. In particular we have the following order theorem similar to Theorems 2, 3
and 5.

Theorem 10. (Slovák, [24]) (i) Let F : FMm,n →FM be a functor from the definition
of bundle functors satisfying conditions (i) and (ii) of the definition and let m ≥ 1 and
n ≥ 0. Then F satisfies the regularity condition (iii) and it is of finite order r ≤ 2f + 1,
where f is the dimension of the standad fiber SF = F0(Rm,n) of F . If moreover m > 1,
n = 0, then

r ≤ max(
f

m− 1
,
f

m
+ 1) ,

and if m > 1 and n > 1, then

r ≤ max(
f

m− 1
,
f

m
+ 1,

f

n− 1
,
f

n
+ 1) .
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All these estimations are sharp.
(ii) Every bundle functor F on FMm has locally a finite order. More precisely, for any

fibered FMm,n-manifold Y , any FMm-object Z, any point y ∈ Y and any FMm-maps

f, g : Y → Z the condition j
r(n+1)
y (f) = j

r(n+1)
y (g) implies Fy(f) = Fy(g), where r(n)

denotes the order of the bundle functor obtained by the restriction of F to the category
FMm,n.

Some bundle functors F (as T r,s,q
k,l ) on FM are product preserving, i.e.

F (Y1 × Y2) = F (Y1)× F (Y2). We have the following characterization of such functors.

Theorem 11. (Mikulski, [20]) (i) Every algebra homomorphism µ : A → B of Weil
algebras determines (explicitely) a product preserving bundle functor Tµ : FM→FM. (ii)
Conversely, any product preserving bundle functor F : FM→FM determines (explicitely)
an algebra homomorphism µF : AF → BF of Weil algebras, and F =̃TµF .

A simple proof of Theorem 11 one can find also in [2].

Some bundle functors F (as Jr) on FMm are fiber product preserving, i.e.
F (Y1 ×M Y2) = F (Y1)×M F (Y2). We have the following characterization of such functors.

Theorem 11. (Kolář and Mikulski, [11]) (i) Every fiber product preserving bundle
functor F : FMm →FM is of finite order. (ii) Every triple (A,H, t), where A is a Weil
algebra of nipotency order less or equal to a finite number r, H is a group homomorphism
from the differential group Gr

m into the group Aut(A) of all automorphisms of A and t is
a Gr

m-invariant algebra homomorphism from the Weil algebra Dr
m = Jr0 (R

m,R) into A,
determines (explicitely) a fiber product preserving bundle functor T (A,H,t) : FMm →FM.
(iii) Conversely, every fiber product preserving bundle functor F : FMm →FM of order r
determines (explicitely) a triple (AF ,HF , tF ), where AF is a Weil algebra of nipotency order
less or equal to a finite number r, HF is a group homomorphism from the differential group
Gr
m into the group Aut(AF ) of all automorphisms of AF and tF is a Gr

m-invariant algebra
homomorphism from the Weil algebra Dr

m = Jr0 (R
m,R) into AF , and F =̃T (A

F ,HF ,tF ).

Remark 2. A fiber product preserving bundle functors F : FMm → FM such that
Jr(Y ) ⊂ F (Y ) ⊂ J̃r(Y ) (the non holonomic r-jet prolongation of Y ) is called of jet type.
In [9], Kolář described completely all such bundle functors of jet type.

Remark 3. Roughly speaking, a local category over manifolds is a category C, whose
objects can be interpreted as manifolds with ”structures” and morphisms as ”maps pre-
serving structures”, such that ”open subsets of C-objects” are C-object and ”restrictions of
C-morphisms to open subsets” are C-morphisms. For example,Mfm,Mf , FMm,n, FMm

and FM are local categories over manifolds. (For example FM is local because an open
subset of a fibered manifold is again a fibered manifold and the restriction of a fibered map
to an open subset is again a fibered map). In contrast, the category VB of vector bundles
and their maps is not local (not every open subset U ⊂ E of a vector bundle E is a vector
bundle). The concept of bundle functors F : C → FM on an arbitrary local category C
over manifolds is presented in [10]. Roughly speaking a bundle functor on a local category
C over manifolds is a covariant functor F : C → FM satisfying the conditions (i)–(iii) of
Definition 1 (with C instad of Mfm). In [10], under some assumptions on C the authors
proved that condition (iii) for F : C → FM is a consequence of functoriality of F and
conditions (i) and (ii) for F (i.e. a theorem similar to the first part of Theorem 2), and
under some assumptions on C the authors presented a characterization of bundle functors
F : C → FM of finite order (similar to the one given in Theorem 7). The mentioned above
assumptions are satisfied for C =Mfm, Mf, FM, FMm,n, FMm.
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The category C = SympMf2m of symplectic 2m-manifolds and their local symplectic
diffeomorphisms is a local category over manifolds. The category C = V olMfm of m-
manifolds with locally integrable volume forms and their local diffeomorphisms preserving
volume forms is local, too.

Theorem 12. (Lubás and Zajtz, [14]) (i) Let F : SympMf2m →FM be a covariant
functor satisfying (i), (ii) and some stronger than (iii) regularity condition. If m ≥ 2, then
F is of finite order

r ≤
f

m
,

where f = dim(F0(R
2m) and R2m is with the standard symplectic structure. The estimation

is sharp.
(ii) Let F : V olMfm →FM be a covariant functor satisfying (i), (ii) and some stronger

than (iii) regularity condition. If m ≥ 2, then F is of finite order

r ≤
f

m− 1
,

where f = dim(F0(R
m) and Rm is with the standard volume form. The estimation is

sharp.

V. Bundle functors on some not local categories over manifolds

Fix a Lie group G and consider the category PBm(G), whose objects are principal G-
bundles over m-manifolds and whose morphisms are the morphisms of principal G-bundles
f : P → P with the base map lying in Mfm and with homomorphisms of G equal to idG.
Since PBm(G) is not local (not every open subset in a principal G-bundle P is again a
principal G-bundle), there is a problem with the locality condition (ii) of bundle functors.
To introduce the locality condition (ii) we must modify the prolongation condition (i).

Definition 7. (Eck, [4]) A gauge natural bundle on PBm(G) is a covariant functor
F : PBm(G)→ FM satisfying the following conditions:

(i) (Prolongation) For every PBm(G)-object P → M F (P ) is a fibered manifold over
M (not over P ) with projection pP : F (P ) → M and for every PBm(G)-map f : P → P
covering f :M →M F (f ) : F (P )→ F (P ) is a fibered map covering f ;

(ii) (Locality) If i : P |U → P is an inclusion, where U ⊂ M is open, then F (P |U) =
p−1P (U) and F (i) is the inclusion of p−1P (U) into F (P ).

(iii) (Regularity) F transform smoothly parametrized systems of PBm(G)-morphisms
into smoothly parametrized systems of FM-morphisms.

Example 15. The bundle of connection. Let P → M be an PBm(G)-object with
the right action r : P × G → P . We shall also denote by r the canonical right action
r : J1(P ) × G → J1(P ) given by rg(j1x(s)) = j1x(r

g ◦ s) for all g ∈ G and j1x(s) ∈ J1(P ).
Then

Q(P ) = J1(P )/G ,

where J1(P )/G is the set of orbits of the action r, is a bundle over M with projection
[j1x(s)] → x. It is called the bundle of principal connections on P . (The smooth sections
M → Q(P ) are in bijection with principal connections on P .) Every PBm(G)-map f : P →
P covering f :M →M induces a fibered map Q(f) : Q(P )→ Q(P ) over f by

Q(f)([j1x(s)]) = [j1f (x)(f ◦ s ◦ f
−1)] .
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The correspondence Q : PBm(G)→ FM is a gauge natural bundle.

If two PBm(G)-maps f, g : P → P satisfy jry(f) = jry(g) at a point x ∈ Px of the
fiber of P over x ∈ M , then the fact that the raight translations of principal bundles are
diffeomorphisms implies jrz(f) = jrz (g) for every z ∈ Px. In this case we write jrx(f) = jrx(g).

Definition 8. (Eck, [4]) Let F be a gauge natural bundle on PBm(G). We say that F is
of finite order if there is a number r such that from jrx(f ) = jrx(g) it follows Fx(f) = Fx(g)
for every PBm(G)-maps f, g : P → P covering f : M → M and every point x ∈ M . The
smallest number r satisfying the above property is called the order of F .

We have the following order theorem similar to Theorems 2 and 3. This theorem was
firstly proved by Eck, [4], but without a sharp estimation.

Theorem 13. (Eck, [4], Kolář, Michor, Slovák, [10]) Let F : PBm(G) →FM be
a functor from Definition 7 satisfying condition (i) and (ii), m ≥ 1. Then F satisfies
condition (iii) and it is of finite order r ≤ 2f + 1, where f is the dimension of the standad
fiber SF = F0(R

m ×G) of F . If moreover m > 1, then

r ≤ max(
f

m− 1
,
f

m
+ 1) .

All these estimations are sharp.

Theorem 13 gives a complete characterization of gauge natural bundles on PBm(G)
similar to Theorem 4 (we construct the associated bundle in similar way as for m-manifolds
by using PBm(G)-maps instead of Mfm-maps). This characterization was obtained by
Eck, [4].

Another not local category over manifolds is the category VB of all vector bundles
and their vector bundle maps. Gauge bundle functors on VB we define similarly as gauge
natural bundles on PBm(G). We have the following complete characterization of product
preserving gauge bundle functors on VB.

Theorem 14. (Mikulski, [21]) (i) Every pair (A, V ) of a Weil algebra A and of an
A-module V with dimR(V ) <∞ determines (explicitely) a product preserving gauge bundle
functor T (A,V ) : VB →FM. (ii) Conversely, any product preserving gauge bundle functor
F : VB →FM determines (explicitely) a pair (AF , V F ) of a Weil algebra AF and of an
AF -module V F with dimR(V F ) <∞, and F =̃T (A

F ,V F ).

Remark 4. Another not local category over manifolds is the product Mfm ×Mf of
categories Mfm and Mf . The objects of Mfm ×Mf are pairs (M,N), where M is an
m-manifold and N is a manifold. The morphisms (M,N) → (M,N) are the pairs (ϕ, f),
where ϕ : M → M is a local diffeomorphism between m-manifolds and f : N → N is a
map. An example of a bundle functor F onMfm×Mf is the bundle functor Jr(M,N) of
holonomic r-jets. Every pair of a local diffeomorphism ϕ :M →M and a map f : N → N
induces fibered map Jr(ϕ, f) : Jr(M,N) → Jr(M,N) over ϕ × f by Jr(ϕ, f)(jrx(g)) =
jr
ϕ(x)(f ◦ g ◦ ϕ

−1) . Taking a bundle functor G : Mf → FM of infinite order we produce
a bundle functor F (M,N) = M × G(N), F (ϕ, f) = ϕ × G(f) of infinite order in the
second factor. In [11], we present a complete characterization of all bundle functors F on
Mfm ×Mf which are of finite order in the first factor.

We have the following new unpublished example.

Example 16. A bundle functor on Mfm ×Mf of infinite order in the first factor.
For any r = 1, 2, 3, ... we define a vector bundle functor Gr : Mf → VB by Gr(N) =
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T (N) × Dr and Gr(f) = T (f) × idDr : Gr(N) → Gr(N) for any map f : N → N , where
Dr = Jr0 (R

m,R) is the vector space of r-jets at 0 of maps Rm → R.
Let dr = dim(Gr

0(R
r)). We set

G(N) =
+∞�

k=1

(
�

dk Gk(N)) .

For every manifold N , G(N) is a finite dimensional manifold because for k > dim(N) the
bundle

	dk Gk(N) is zero-bundle. Hence the direct sum in the definition of G(N) is in
reality a finite sum. For a mapping f : N → N the induced mapping G(f) : G(N)→ G(N)
is defined in the natural way from

	dk Gk(f). In this way we obtain vector bundle functor
G onMf of order 1.

The group G∞m = invJ∞0 (Rm,Rm)0 of invertible ∞-jets acts on Dr by the pull-back.
Hence for r = 1, 2, ... we have a group homomorphism Hr : G∞m →NEvb(G

r) into the group
of vector bundle natural equivalences of G by Hr(ξ)N : Gr(N) → Gr(N), Hr(ξ)N (v, η) =
(v, ξ · η), v ∈ T (N), ξ ∈ G∞m , η ∈ Dr, where the dot is the action. Hence for any ξ ∈ G∞m
and a manifold N we have a vector natural equivalence H(ξ)N : G(N) → G(N) which is
defined in natural way from

	dk Hk(ξ)N :
	dk Gk(N)→

	dk Gk(N). This defines a group
homomorphism H : G∞m →NEvb(G).

For any manifold N the corresponding action H of G∞m on G(N) can be factorized by
a smooth action of GlN

m on G(N) for some finite lN . Hence we can proced similarly as in
[11] for above G and H and obtain bundle functor (G,H) onMfm ×Mf . More precisely,
we set

(G,H)(M,N) = P∞(M)[G(N),HN ] ,

the associated bundle with P∞(M) and fibre G(N). Then (G,H)(M,N) is a finite di-
mensional manifold diffeomorphic to P lN (M)[G(N)]. We define the source and the target
projections α : (G,H)(M,N) → M by α(< j∞0 (γ), v >) = γ(0) and β : (G,H)(M,N)
→ N by β(< j∞0 (γ), v >) = y for all j∞0 (γ) ∈ P∞(M) and v ∈ Gy(N), y ∈ N . Every
pair of a local diffeomorphism ϕ : M → M and a map f : N → N induce a fibered map
(G,H)(ϕ, f) = (G,H)(M,N)→ (G,H)(M,N) by

(G,H)(ϕ, f)(< j∞0 (γ), v >) =< j∞0 (ϕ ◦ γ), G(f)(v) > .

The bundle functor (G,H) is of order 1 in the second factor. The bundle functor (G,H) is
of infinite order in the first factor because the homomorphism H can not be factorized by
a group homomorphism Gl

m →NE(G) with finite l.
Similarly, starting from a bundle functor T̃ :Mf → FM of infinite order instead of T

we can produce a bundle functor onMfm ×Mf of infinite order in both factors.
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POINCARÉ DUALITY OF TOPOLOGICAL MANIFOLDS

ALEXANDR MISHCHENKO

Abstract

The problem of writing the Hirzebruch formula (see [1]) for topological manifolds for
families of representations of the fundamental group collides with two difficulties. The first is
related to difinition of rational Pontryagin characteristic classes that demands in particular
the Novikov theorem about topological invariance of the rational Pontryagin classes. The
second difficulty consists of that the construction of the signature needs a modification
of classical construction for topological manifolds. Really, it is impossible to define the
Poincare duality as a homomorphism of finite generated differential module since homology
by itself is defined using either singular chains or spectrum of open coverings of manifolds.
In both cases one should deal with infinite generated modules although homology here turns
out to be finite generated spaces.

Here the following construction is possible. Let U = {Uα} be a finite covering of the
compact manifold X. Let NU be the nerve of the covering U . The nerve NU detemines a
finite simplicial polyhedron and hence determines chain and cochain complexes with local
system of coefficients defined by a finite dimensional representation ρ of the fundamental
group π1(X).

Consider a refining sequence of covering Un = {Un
α}, Un+1 ≻ Un. This means that

Un+1
α ⊂ Un

β for a proper β = β(α). Hence the function β = β(α) defines a simplicial
mapping

πn+1n : NUn+1 → NUn,

and defines the homomorphism of the homology and cohomology groups

(πn+1n )∗ : H∗



NUn+1

�
→ H∗ (NUn) ,

(πn+1n )∗ : H∗ (NUn)→ H∗



NUn+1

�
.

Here homology and cohomology of the manifold X are defined as limits of homology
and cohomology of nerves of the coverings:

H∗(X) = lim
→

H∗ (NUn) ,

H∗(X) = lim
←

H∗ (NUn) .

Then the Poincare duality should defined as a homomorphism D : H∗(X) → H∗(X),
generated by the intersection operator with the open cycle of dimension n.

Notice that one can choose the refining sequence of covering in such way that each cover-
ing had multiplicity equal to N +1, N = dim(X). The the Poincare duality can be defined

as the intersection operator with the cycle Dn ∈ Cn

�
ÑUn

�
, where (πn+1n )∗(Dn+1) = Dn.

There is the following simple argument due to the Mittag-Leffler condition: let C∞∗ (X) =
lim
←

C∗ (NUn), C
∗
∞(X) = lim

→
C∗ (NUn). Then H∗(X) = H (C∞∗ (X)), H∗(X) = H (C∞∗ (X)),

where the Poincare homomorphism D is induced by the intersection operator with the cycle
D∞ = lim

←
(Dn), that is D = H( ∩| D∞).
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On the other hand

C∞∗ (X) = hom(C∗∞(X);R) ,

that allows to define the signature on the level of a quadratic form defined on the cycle
group.

To this end let consider the category C0 of countable generated vector spaces over real
numbers. Each space V can be considered as a direct limit of countable sequence of finite
dimensinal spaces with topology of the direct limit. Then the vector space V ∗ = hom(V,R)
can be represented as a inverse limit of finite dimensional spaces with topology of inverse
limit. Denote by homt(V,R) the space of continuous linear functionals. Then for V ∈ C0
one has hom(V,R) = homt(V,R) where homt(V ∗, R) = V . Let C denote the category with
objects being topological space of the form V = V1 ⊕ V ∗2 and morphisms being continuous
linear mappings. A non degenerated quadratic form on the object of the category C is
defined as a continuous isomorphism

ϕ : V ∗ → V, ϕ∗ = ϕ.

If V = V1 ⊕ V ∗1 and the isomorphism ϕ defined by a hyperbolic matrix then the quadratic
form is called trivial.

þ For non degenerated quadratic form there exists correctly defined invariant signϕ
which is additive with respect to direct sum, equals to zero on trivial quadratic forms and
coincides with classical signature on finite dimensional vector spaces.

The invariant defined above is admissible for constructing of signature of topological
manifold with local system of coefficients ([2]).
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MINIMAL NILPOTENT ALGEBRAS IN GOURSAT FLAGS
OF LENGTHS NOT EXCEEDING 6

PIOTR MORMUL

1 Nilpotent approximation of a distribution at a point.

For any distribution D of rank d on an n—dimensional, smooth or real analytic, manifold
M (i. e., rank—d subbundle in the tangent bundle TM) its small flag is the nested sequence

V1 ⊂ V2 ⊂ V3 ⊂ · · ·

of modules (or: presheaves of modules) of vector fields (of the same category asM) tangent
to M : V1 = D, Vj+1 = Vj + [D, Vj ] for j = 1, 2, . . . The small growth vector at p ∈M is
the sequence (nj) of linear dimensions at p of the modules Vj : nj = dimVj(p). Naturally,
n1 = d independently of p.

D is completely nonholonomic when at every point of M its small growth vector attains
(sooner or later) the highest value n = dimM . Once this value attained, we truncate the
vector after the first appearance of n in it. The length dNH of thus truncated vector is
called the nonholonomy degree of D at p.

In the theory that we recall (cf. [1], [AGS], [BS], [B]; this list of references is not com-
plete) important are the weights wi related to the small flag at a point: w1 = · · · = wd = 1,
wd+1 = · · · = wn2 = 2 (no value 2 among them when n2 = d), and generally wnj+1 = · · · =
wnj+1 = j + 1 (no value j + 1 among them when nj = nj+1) for j = 1, 2, . . .

Definition 1. For a completely nonholonomic distributionD onM , coordinates z1, z2, . . . , zn
around p ∈M are linearly adapted at pwhen D(p) = (∂1, . . . , ∂d), V2(p) = (∂1, . . . , ∂d, . . . , ∂n2),
and so on until VdNH(p) = (∂1, . . . , ∂n) = TpM . Here and in the sequel we skip writing
‘span’ before a set of v. f. generators.
For such linearly adapted coordinates we define their weights w(zi) = wi, i = 1, . . . , n.

On the other hand, having a completely nonholonomic D, every smooth function f on
M near p has its nonholonomic order wrt D at p (+∞ is not excluded). It is the minimal
number of differentiations of f along the local generators of D that give at p a nonzero
result.

It follows directly from the above definitions that, for linearly adapted coordinates, their
nonholonomic orders do not exceed their weights. Linearly adapted coordinates z1, . . . , zn
are adapted (or: privileged ) when the nonholonomic order of zi equals w(zi), i = 1, . . . , n.
(In particular, adapted coordinates must vanish at p; one says that they are centered at p.)

It is not so quick, but true, that adapted coordinates always exist, and can even be
algorithmically constructed from any à priori given coordinates, even in a polynomial way,
as is done for inst. in [B]. They are not unique, there remains plenty of liberty behind the
requirement that the nonholonomic orders (of linearly adapted coordinates) be maximal
possible. ln adapted coordinates it is purposeful to attach quasihomogeneous weights also
to monomial vector fields (this definition goes back to the 1970’s, to the theory of differential
operators),

w(zi1 · · · zik∂j) = w(zi1) + · · ·+w(zik)−w(zj) . (1)
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Proposition 3. Every smooth vector field X with values in D has in its Taylor expansion
in arbitrary coordinates adapted for D only terms of weights not smaller than −1 that can
be grouped in homogeneous summands X = X(−1) +X(0) +X(1) + · · ·

(superscripts mean the weights defined by (1)). We denote by �X the lowest (‘nilpotent’)
summand X(−1). That is, �X = X(−1).

When a distribution D has around p local generators (vector fields) X1, . . . , Xd, then

Definition 2. The distribution �D =


X1, . . . , 
Xd

�
is called the nilpotent approximation of

D at p.

This object �D is invariantly defined, independently of the used adapted coordinates, see
Prop. 5.20 in [B]. Its basic properties are

Proposition 4. The nilpotent approximation �D of D has at p the same small growth vec-
tor as D (and hence the same nonholonomy degree dNH). Moreover, the real Lie algebra
generated by 
X1, . . . , 
Xd is a nilpotent Lie algebra of nilpotency order dNH

(the nilpotency order of a Lie algebra is the minimal number of multiplications in that
algebra yielding always zero).

Definition 3 ([AG]). Distribution D is strongly nilpotent at a point p when its germ at p
is equivalent to its nilpotent approximation �D at p.
([HLS], [M4]) Distribution D is weakly nilpotent at a point p when D possesses, locally
around p, a basis generating over R a nilpotent (real) Lie algebra of vector fields.

In the founding work [HLS], and posterior control theory literature, weakly nilpotent dis-
tributions are called nilpotentizable. Nilpotent approximations of distributions, and in
particular strongly nilpotent distributions play a growing role in sub-riemannian geometry
([B], [AG], [5]).

2 Kumpera-Ruiz algebras of Goursat distributions.

In the sequel we deal with Goursat distributions — a rather restricted class of objects for
which preliminary (local) polynomial normal forms of [KR] exist with real parameters only,
and no functional moduli. Their definition requires that the sequence of consecutive Lie
squares of the original rank—2 subbundle of TM consist of regular distributions of ranks
3, 4,. . . until n = dimM . In the abstract [M3] we recalled a basic partition of Goursat
germs into disjoint geometric classes encoded by words of length n − 2 over the alphabet
G, S,T, with two first letters always G and such that never a T goes directly after a G.
Their construction was done by Montgomery and Zhitomirskii; it is reproduced in Sec. 1.3
of [M2]. (Implicitly these classes are already present in a pioneering work [J], in which the
author uses a trigonometric presentation of Goursat objects. Another way of constructing
them has been proposed in [PR1] where they are called singularity types.)

In dimension 4 there is but one class GG, in dimension 5 — only GGG and GGS, in
dimension 6 — GGGG, GGSG, GGST, GGSS, GGGS.

The union of all geometric classes of fixed length with letters S in fixed positions in the
codes is called, after [MZ], a Kumpera-Ruiz class of Goursat germs of that corank. For
inst., in dimension 6 the two geometric classes GGSG and GGST build one KR class ∗∗S∗.

Passing to nonholonomy degrees, Jean was able to compute them for objects showing up
in his trigonometric presentation. That, in view of Thm. 4.1 of [BH] (see also [MZ], [PR1])
and after putting geometric classes in relief in Jean’s approach, does for all G. germs.
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Proposition 5 ([J]). In dimension n, the nonholonomy degree dNH of any Goursat germ
in the geometric class C, equals the last term bn−2 in the sequence b1, b2, . . . , bn−2 defined
only in terms of C: b1 = 2, b2 = 3,

bj+2 = bj + bj+1 when the (j + 2)-th letter in C is S,

bj+2 = 2bj+1 − bj when the (j + 2)-th letter in C is T,

bj+2 = 1+ bj+1 when the (j + 2)-th letter in C is G.

The mentioned polynomial (local) presentations of G. objects were not used in [J], but
what are they? The essence of the contribution [KR], given in the notation of vector fields
and taking into account posterior works, is as follows. We construct a (not unique) rank—2
distribution on (Rn(x1, . . . , xn), 0) departing from the code of a geometric class C.

When the code starts with precisely s letters G, one puts
1
Y = ∂1,

2
Y =

1
Y + x3∂2 , . . . ,

s+1
Y =

s

Y + xs+2∂s+1. When s < n− 2, then the (s+ 1)th letter in C is S. More generally,

if the mth letter in C is S, and
m

Y is already defined, then

m+1
Y = xm+2

m

Y + ∂m+1 .

But there can also be T’s or G’s after an S. If the mth letter in C is not S, and
m

Y is already
defined, then

m+1
Y =

m

Y +


cm+2 + xm+2

�
∂m+1 ,

where a real constant cm+2 is not absolutely free but

• equal to 0 when the mth letter in C is T,

• not equal to 0 when the mth letter is G going directly after a string ST. . .T (or after
a short string S).

Now, on putting X = ∂n and Y =
n−1
Y , and understanding (X,Y) as the germ at 0 ∈ Rn,

Theorem 3 ([KR]). Any Goursat germ D on a manifold of dimension n, sitting in a
geometric class C, can be put (in certain local coordinates) in a form D = (X, Y), with
certain constants in the field Y corresponding to G’s past the first S in C.

Definition 4. The real Lie algebra generated by X and Y is called the KR algebra of the
germ D. This algebra does not depend on the choice of coordinates in Thm. 3, although so
do the constants in Y. Its nilpotency order is denoted by OKR.

(A short analysis shows that this algebra depends solely on the Kumpera-Ruiz class of D.)

In 2000 we proved (cf. Rem. 1 in [M1])

Theorem 4 ([M4]). The KR algebra of any Goursat distribution in dimension n, locally
around a point belonging to a geometric class C, is nilpotent of nilpotency order dn−2,
where dn−2 is the last term in the sequence d1, d2, . . . , dn−2 defined only in function of the
Kumpera-Ruiz class subsuming C: d1 = 2, d2 = 3, dj+2 = dj + dj+1 when the (j + 2)-th
letter in C is S, and otherwise dj+2 = 2dj+1 − dj.

Note that in [PR2] a result stating just the nilpotency of the same algebras (the existence
of finite nilpotency orders for them) is given.

Definition 5. We call tangential geometric classes whose codes possess letters G only in
the beginning, before the first S (if any) in the code. Tangential Goursat germs are those
sitting in the tangential classes.
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Example 1. Up to dimension 5 all geometric classes are tangential. The first, and unique
non-tangential class in dimension 6 is GGSG. In dimension 7 there are eight tangential
classes and five non-tangential: GGSGG, GGSTG, GGSGS, GGGSG, GGSSG. In dimen-
sion 8 there are sixteen tangential and eighteen non-tangential geometric classes (cf. Thm. 5
below).

Tangential classes become clearly visible when one uses the polynomial presentation.

Observation 1. A Goursat germ D is tangential ⇐⇒ in any KR presentation (X, Y) of
D there is no non-zero constant

(so tangential germs are easily given local models with no parameters).

3 Minimality of KR algebras in several geometric classes.

The comparison of the formulas for the nonholonomy degree dNH (Prop. 5) with the ones for
nilpotency order OKR (Thm. 4) yields that in each fixed geometric class C a). dNH ≤ OKR,
and b). dNH = OKR only when C is tangential. Thus within tangential classes the KR
algebras cannot be improved in the sense of lowering nilpotency orders. (Also — as is visible
in the proof of Thm. 4 in [M4] — the germs in tangential classes are all strongly nilpotent,
and Kumpera-Ruiz coordinates of Thm. 3 are already adapted.)

How is it in non-tangential classes? Do there exist there Goursat germs with better nilpotent
bases — with lower nilpotency orders?

This question makes sense from dimension 6 onwards (see Ex. 1). We announce below the
full answer in dimensions 6 and 7 (addressing all non-tangential classes in these dimensions),
and a partial one in dimension 8 (addressing eight out of eighteen non-tangential classes).

Theorem 5.
A. In dimension 6, for germs in the class GGSG the nilpotency order OKR = 7 is minimal
among all possible local nilpotent bases, despite the fact that dNH = 6 for these germs.

B. In dimension 7, for germs in the classes:

geometric class dNH OKR

GGSGG 7 9

GGSTG 8 9

GGSSG 9 11

GGSGS 11 12

GGGSG 8 10

their respective KR algebras are of minimal possible nilpotency order.

C. In dimension 8, for germs in the non-tangential classes:

geometric class dNH OKR

GGSGGG 8 11

GGSTGG 9 11

GGSTTG 10 11

GGSSGS 17 19

GGSGSG 12 17

GGSTSG 13 17

GGSGST 16 17

GGGSGS 15 17
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their respective KR algebras are of minimal possible nilpotency order, too.

We do not yet know the answer in the remaining ten non-tangential classes in dimension
8.

Corollary 1. In dimension 6 and 7, for all Goursat germs in the non-tangential geometric
classes, their nilpotent approximations are not equivalent to the departure germs. The
same concerns the germs in dimension 8 sitting in the eight non-tangential classes listed
in Thm. 5,C. It is so because of the second property of nilpotent approximations recalled in
Prop. 4. Thus those germs are not strongly nilpotent.

The weak form of nilpotency — possession of a nilpotent basis — appears thus much
weaker than the strong form of nilpotency of a distribution germ. In [M4] it is conjectured
that the pattern emerging from Thm. 5 is valid for all non-tangential geometric classes in all
dimensions. Implying that, conjecturally, the notions ‘tangential’ and ‘strongly nilpotent’
simply coincide.
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INVARIANT KÄHLER POLARIZATIONS AND
GEOMETRY OF VECTOR FIELDS

IHOR MYKYTYUK

Abstract

Let G/K be a Riemannian symmetric space. Let g = k⊕m be the corresponding invari-
ant splitting of the Lie algebra g of G. Geometric constructions which come from geometric
quantization naturally lead to complex structures defined on the punctured cotangent bun-
dle T ∗0 (G/K) = T∗(G/K)−{zero section}. Such structure JS for the spheres was found by
Souriau. Later it was observed by Rawnsley, that the length function is strictly plurisub-
harmonic with respect to the above complex structure JS and defines the Kähler metric
on T ∗0 S

n with the canonical symplectic form Ω as the Kähler form. He also observed that
JS is invariant with respect to the Hamiltonian flow of the length function (the normalized
geodesic flow) and used the Kähler polarization JS to quantize the geodesic flow on the
spheres.

Our purpose is to describe G-invariant Kähler structures on T ∗(G/K). Denote by 2 , 3
the scalar product on m defining the Riemannian metric on G/K. Let S+(mC) be the set
of all invertible symmetric (with respect to 2 , 3) operators s : mC → mC such that Re s > 0
(positive definite).
Theorem.There is one-to-one correspondence between the set of all G-invariant Kähler

structures {(J,Ω)} on T ∗(G/K) and the set {P} of all smooth mappings P : m→ S+(mC),
w 4→ Pw such that 1) (Adk P Adk−1)|m = PAdk w, ∀w ∈ m, k ∈ K; 2)

�
Pw(ξ), Pw(η)

�
(w) =

−[w, [ξ, η]] on m, ∀ξ, η ∈ m, where we consider the maps w 4→ Pw(ξ), w 4→ Pw(η) as vector
fields on m.

It is described all mappings P satisfying conditions of Theorem in the following cases:
(1) if rank G/K = 1, dimG/K ≥ 3; (2) if the corresponding Kähler structure (J,Ω) is
invariant under the normalized geodesic flow. For Hermitian symmetric spaces G/K of
rank ≥ 2 a family of Kähler structures (of mappings P ) is constructed. As an application
of these results we obtain 1) a description of the curvature tensor of the symmetric space
F4/Spin(9) in terms of its Spin(9)-structure; 2) new results concerning the hyper-Kähler
metric on T ∗(G/K) if G/K is a Hermitian symmetric space of rank ≥ 1 (in this case
the natural holomorphic-symplectic structure underlies the hyper-Kähler metric, whose
restriction to G/K is the given homogeneous metric).
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LOCAL STRUCTURES OF KV-ALGEBROIDS AND LIE ALGEBROIDS

MICHEL NGUIFFO BOYOM and ROBERT WOLAK

Abstract

The word manifold is used for smooth or complex analytic manifold. We deal with
connected and paracompact manifolds. For a given manifold M F (M,K) stands for the
associative K-algebra of K-valued smooth functions if K = R (resp. the sheaf of complex
analytic functions if K = C).Geometric objects considered on M are either smooth or
complex analytic according to K := R or C . Given a vector bundle A on M sect(A)
stands for the F (M,K)-module of sections of A. A Koszul-Vinberg algebroid (resp Lie
algebroid ) on M is couple (A, a) where A is a vector bundle on M and a is a vector bundle
M-homomorphism from A to TM (TM is the holomorphic tangent bundle when K = C)
such that:

i) sect(A) is endoved with a structure of Koszul-Vinberg algebra (sect(A), . ) (resp.
structure of Lie algebra (sect(A), [ , ]);

ii) given S, S′ in sect(A) and f in F (M,K) one has (fS).S′ = f(S.S′) and S.(fS′) =
f(S.S′) + (a(S)f)S′, (resp. [fS, S′] = f [S,S′] + (a(S)f)S′).

The purpose of the confernce is to expose a decomposition theorem ( normal forms ) of
KV -algebroids ( resp. Lie algebroids ) and a local classification theorem as well.
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EXTENDED POINCARÉ PARASUPERGROUP WITH CENTRAL CHARGES

ANATOLY NIKITIN

Abstract

Irreducible represemtations of thr extended Poincaré parasuperalgebra with non-trivial
central charges are described. Linear and non-linear models invariant w.r.t. the related
parasupergroup are discussed.
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THE HOLOMORPHIC PSEUDOSYMMETRY OF KÄHLER MANIFOLDS

ZBIGNIEW OLSZAK

Abstract

The holomorphic pseudosymmetry is a natural generalization of the semisymmetry, in
particular, the local symmetry.

A Kähler manifoldM(J, g) is said to be holomorphically pseudosymmetric if its Riemann
curvature R satisfies the condition

R ·R = f R̃ ·R,

where f is a certain function on M and R̃ is the derivation of the tensor algebra generated
by the curvature type endomorphism

R̃(X, Y ) = X ∧ Y + (JX)∧ (JY )− 2g(JX,Y )J.

Basing on the Lichnerowicz’s integral formulas, we can investigate the holomorphic pseu-
dosymmetry of compact Kähler manifolds. The main result is the following:

Let M be a compact Kähler manifold with constant scalar curvature. If M is holomor-
phically pseudosymmetric with f ≥ 0, then it is locally symmetric.

Institute of Mathematics
Wrocław University of Technology
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GEOMETRIC ASPECTS OF INVARIANTS
OF FINITE TYPE OF KNOTS IN S3

LEONID PLACHTA

Abstract

The knot invariants of finite type (or Vassiliev invariants) give a coherent and systematic
way to study the polynomial invariants of knots in S3. However the geometric nature and
geometric understanding of both the polynomial and the Vassiliev invariants remain missing.
That is, it is unclear what kind of geometric knot information is carried by these invariants.
In the present talk, we briefly review the well-known facts on this subject and report some
new results.

The two knots are called n-equivalent, where n ≥ 1, if they cannot be distinguished by
the Vasssiliev invariants of order ≤ n, the invariants taking values in any abelian group.
The ralation of n-equivalence on knots in S3 has been characterized by Habiro [1], in terms
of Cn+1-moves on knots, and Stanford [5], in terms of the pure braid (n+1)-commutators.
A knot is called n-trivial, if it is n-equivalent to the trivial one. In [2], Kalfagianni and
Lin initiated the study of knot invariants of finite type in S3 via geometric methods. They
interpret these invariants as obstructions to a knot’s bounding a regular Seifert surface with
certain properties. More precisely, in order to describe the classes of n-equivalent knots,
they introduced for each n > 1 the classes of n-hyperbolic, n-elliptic and n-parabolic knots,
and showed that all they are n-trivial. It is unknown however whether the class consisting
of all n-hyperbolic, n-elliptic and n-parabolic knots coincides with the one of n-trivial knots.
They asked if furthermore, (n − 1)- and (n − 2)-hyperbolic knots are n-trivial. We show
that in the first case the answer to the question is affirmative, while in the second case this
is negative. More precisely, we show that all (n − 1)-hyperbolic, n > 2, are n-trivial and
that for each odd integer n > 3 there is an (n− 2)-hyperbolic knot which is not n-trivial.
Note that any n-hyperbolic and n-elliptic knots have the trivial Alexander polynomial. We
introduce the notion of n-band equivalent knots and study the relationship between the
class of all n-hyperbolic and n-elliptic knots and the class of knots, n-band equivalent to
the trivial one. We discuss also the problem of how can change the group of a knot, after
an application of a simple Cn-move to it, or equivalently, after an insertion of a pure braid
n-commutator pσ [3] in the knot. We provide a sufficient condition under which a simple
Cn-move on a knot does not affect the Alexander polynomial of it [4]. Several problems
concerning the geometric properties of invariants of finite order are also raised.
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ON HIGER GEOMETRY AND INDUCED OBJECTS ON SUBSPACES

MARCELA POPECSU and PAUL POPESCU

Abstract

Besides a theory of higher order Finsler and Lagrange spaces, a dual theory of higher
order Hamilton spaces was only recentely studied using the bundles of accelerations. In this
paper we investigate the possibility to use these ideas in a more general setting. A recursive
definition of higher order bundles defined by an affine bundle E and a vector pseudo-field
on E can be considered, obtaining the acceleration bundles as a particular case. The
case of non-holonomic spaces is effectively studied. A dual theory between lagrangians and
hamiltonians (via Legendre transformations) is considered using affine bundles. A canonical
way to induce a hamiltonian on an affine subbundle is also given.
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A SMOOTH STRUCTURE
ON LOCALLY COMPACT TOPOLOGICAL GROUP

TOMASZ RYBICKI

Abstract

It is shown that any connected locally compact topological group (or, more generally,
any PL-group) carries a smooth structure. Here a smooth structure is determined by a
set of smooth curves with some conditions specified. It is observed that the Lie algebra
of a locally compact group is identified with the Lie algebra assigned to a smooth group
structure. Further properties are exhibited.
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PROPERTIES OF THE CURVATURE OF KÄHLER—NORDEN MANIFOLDS

KARINA SŁUKA

Abstract

Let M be a smooth 2n-dimensional manifold with an almost complex structure J and
a pseudo-Riemannian anti-Hermitian metric g, i.e.

J2 = −I, g(JX, JY ) = −g(X,Y ).

If additionaly ∇J = 0, where ∇ is the Levi-Civita connection of g, then the triple (M,J, g)
form a Kähler-Norden manifold. A structure of this kind is also called an almost complex
structure with B-metric, or an anti-Kählerian structure.

We have considered the classes of Kähler-Norden manifolds with recurrent curvature,
recurrent holomorphic projective curvature, or recurrent conformal curvature.

We are also interested in those Kähler-Norden manifolds satisfying the conditions of
semisymmetry or more generally the conditions of pseudosymmetry type.
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